Identifier
- St000229: Set partitions ⟶ ℤ
Values
=>
Cc0009;cc-rep
{{1}}=>1
{{1,2}}=>2
{{1},{2}}=>2
{{1,2,3}}=>3
{{1,2},{3}}=>3
{{1,3},{2}}=>4
{{1},{2,3}}=>3
{{1},{2},{3}}=>3
{{1,2,3,4}}=>4
{{1,2,3},{4}}=>4
{{1,2,4},{3}}=>5
{{1,2},{3,4}}=>4
{{1,2},{3},{4}}=>4
{{1,3,4},{2}}=>5
{{1,3},{2,4}}=>6
{{1,3},{2},{4}}=>5
{{1,4},{2,3}}=>6
{{1},{2,3,4}}=>4
{{1},{2,3},{4}}=>4
{{1,4},{2},{3}}=>6
{{1},{2,4},{3}}=>5
{{1},{2},{3,4}}=>4
{{1},{2},{3},{4}}=>4
{{1,2,3,4,5}}=>5
{{1,2,3,4},{5}}=>5
{{1,2,3,5},{4}}=>6
{{1,2,3},{4,5}}=>5
{{1,2,3},{4},{5}}=>5
{{1,2,4,5},{3}}=>6
{{1,2,4},{3,5}}=>7
{{1,2,4},{3},{5}}=>6
{{1,2,5},{3,4}}=>7
{{1,2},{3,4,5}}=>5
{{1,2},{3,4},{5}}=>5
{{1,2,5},{3},{4}}=>7
{{1,2},{3,5},{4}}=>6
{{1,2},{3},{4,5}}=>5
{{1,2},{3},{4},{5}}=>5
{{1,3,4,5},{2}}=>6
{{1,3,4},{2,5}}=>8
{{1,3,4},{2},{5}}=>6
{{1,3,5},{2,4}}=>8
{{1,3},{2,4,5}}=>7
{{1,3},{2,4},{5}}=>7
{{1,3,5},{2},{4}}=>7
{{1,3},{2,5},{4}}=>8
{{1,3},{2},{4,5}}=>6
{{1,3},{2},{4},{5}}=>6
{{1,4,5},{2,3}}=>7
{{1,4},{2,3,5}}=>8
{{1,4},{2,3},{5}}=>7
{{1,5},{2,3,4}}=>8
{{1},{2,3,4,5}}=>5
{{1},{2,3,4},{5}}=>5
{{1,5},{2,3},{4}}=>8
{{1},{2,3,5},{4}}=>6
{{1},{2,3},{4,5}}=>5
{{1},{2,3},{4},{5}}=>5
{{1,4,5},{2},{3}}=>7
{{1,4},{2,5},{3}}=>9
{{1,4},{2},{3,5}}=>8
{{1,4},{2},{3},{5}}=>7
{{1,5},{2,4},{3}}=>9
{{1},{2,4,5},{3}}=>6
{{1},{2,4},{3,5}}=>7
{{1},{2,4},{3},{5}}=>6
{{1,5},{2},{3,4}}=>8
{{1},{2,5},{3,4}}=>7
{{1},{2},{3,4,5}}=>5
{{1},{2},{3,4},{5}}=>5
{{1,5},{2},{3},{4}}=>8
{{1},{2,5},{3},{4}}=>7
{{1},{2},{3,5},{4}}=>6
{{1},{2},{3},{4,5}}=>5
{{1},{2},{3},{4},{5}}=>5
{{1,2,3,4,5,6}}=>6
{{1,2,3,4,5},{6}}=>6
{{1,2,3,4,6},{5}}=>7
{{1,2,3,4},{5,6}}=>6
{{1,2,3,4},{5},{6}}=>6
{{1,2,3,5,6},{4}}=>7
{{1,2,3,5},{4,6}}=>8
{{1,2,3,5},{4},{6}}=>7
{{1,2,3,6},{4,5}}=>8
{{1,2,3},{4,5,6}}=>6
{{1,2,3},{4,5},{6}}=>6
{{1,2,3,6},{4},{5}}=>8
{{1,2,3},{4,6},{5}}=>7
{{1,2,3},{4},{5,6}}=>6
{{1,2,3},{4},{5},{6}}=>6
{{1,2,4,5,6},{3}}=>7
{{1,2,4,5},{3,6}}=>9
{{1,2,4,5},{3},{6}}=>7
{{1,2,4,6},{3,5}}=>9
{{1,2,4},{3,5,6}}=>8
{{1,2,4},{3,5},{6}}=>8
{{1,2,4,6},{3},{5}}=>8
{{1,2,4},{3,6},{5}}=>9
{{1,2,4},{3},{5,6}}=>7
{{1,2,4},{3},{5},{6}}=>7
{{1,2,5,6},{3,4}}=>8
{{1,2,5},{3,4,6}}=>9
{{1,2,5},{3,4},{6}}=>8
{{1,2,6},{3,4,5}}=>9
{{1,2},{3,4,5,6}}=>6
{{1,2},{3,4,5},{6}}=>6
{{1,2,6},{3,4},{5}}=>9
{{1,2},{3,4,6},{5}}=>7
{{1,2},{3,4},{5,6}}=>6
{{1,2},{3,4},{5},{6}}=>6
{{1,2,5,6},{3},{4}}=>8
{{1,2,5},{3,6},{4}}=>10
{{1,2,5},{3},{4,6}}=>9
{{1,2,5},{3},{4},{6}}=>8
{{1,2,6},{3,5},{4}}=>10
{{1,2},{3,5,6},{4}}=>7
{{1,2},{3,5},{4,6}}=>8
{{1,2},{3,5},{4},{6}}=>7
{{1,2,6},{3},{4,5}}=>9
{{1,2},{3,6},{4,5}}=>8
{{1,2},{3},{4,5,6}}=>6
{{1,2},{3},{4,5},{6}}=>6
{{1,2,6},{3},{4},{5}}=>9
{{1,2},{3,6},{4},{5}}=>8
{{1,2},{3},{4,6},{5}}=>7
{{1,2},{3},{4},{5,6}}=>6
{{1,2},{3},{4},{5},{6}}=>6
{{1,3,4,5,6},{2}}=>7
{{1,3,4,5},{2,6}}=>10
{{1,3,4,5},{2},{6}}=>7
{{1,3,4,6},{2,5}}=>10
{{1,3,4},{2,5,6}}=>9
{{1,3,4},{2,5},{6}}=>9
{{1,3,4,6},{2},{5}}=>8
{{1,3,4},{2,6},{5}}=>10
{{1,3,4},{2},{5,6}}=>7
{{1,3,4},{2},{5},{6}}=>7
{{1,3,5,6},{2,4}}=>9
{{1,3,5},{2,4,6}}=>10
{{1,3,5},{2,4},{6}}=>9
{{1,3,6},{2,4,5}}=>10
{{1,3},{2,4,5,6}}=>8
{{1,3},{2,4,5},{6}}=>8
{{1,3,6},{2,4},{5}}=>10
{{1,3},{2,4,6},{5}}=>9
{{1,3},{2,4},{5,6}}=>8
{{1,3},{2,4},{5},{6}}=>8
{{1,3,5,6},{2},{4}}=>8
{{1,3,5},{2,6},{4}}=>11
{{1,3,5},{2},{4,6}}=>9
{{1,3,5},{2},{4},{6}}=>8
{{1,3,6},{2,5},{4}}=>11
{{1,3},{2,5,6},{4}}=>9
{{1,3},{2,5},{4,6}}=>10
{{1,3},{2,5},{4},{6}}=>9
{{1,3,6},{2},{4,5}}=>9
{{1,3},{2,6},{4,5}}=>10
{{1,3},{2},{4,5,6}}=>7
{{1,3},{2},{4,5},{6}}=>7
{{1,3,6},{2},{4},{5}}=>9
{{1,3},{2,6},{4},{5}}=>10
{{1,3},{2},{4,6},{5}}=>8
{{1,3},{2},{4},{5,6}}=>7
{{1,3},{2},{4},{5},{6}}=>7
{{1,4,5,6},{2,3}}=>8
{{1,4,5},{2,3,6}}=>10
{{1,4,5},{2,3},{6}}=>8
{{1,4,6},{2,3,5}}=>10
{{1,4},{2,3,5,6}}=>9
{{1,4},{2,3,5},{6}}=>9
{{1,4,6},{2,3},{5}}=>9
{{1,4},{2,3,6},{5}}=>10
{{1,4},{2,3},{5,6}}=>8
{{1,4},{2,3},{5},{6}}=>8
{{1,5,6},{2,3,4}}=>9
{{1,5},{2,3,4,6}}=>10
{{1,5},{2,3,4},{6}}=>9
{{1,6},{2,3,4,5}}=>10
{{1},{2,3,4,5,6}}=>6
{{1},{2,3,4,5},{6}}=>6
{{1,6},{2,3,4},{5}}=>10
{{1},{2,3,4,6},{5}}=>7
{{1},{2,3,4},{5,6}}=>6
{{1},{2,3,4},{5},{6}}=>6
{{1,5,6},{2,3},{4}}=>9
{{1,5},{2,3,6},{4}}=>11
{{1,5},{2,3},{4,6}}=>10
{{1,5},{2,3},{4},{6}}=>9
{{1,6},{2,3,5},{4}}=>11
{{1},{2,3,5,6},{4}}=>7
{{1},{2,3,5},{4,6}}=>8
{{1},{2,3,5},{4},{6}}=>7
{{1,6},{2,3},{4,5}}=>10
{{1},{2,3,6},{4,5}}=>8
{{1},{2,3},{4,5,6}}=>6
{{1},{2,3},{4,5},{6}}=>6
{{1,6},{2,3},{4},{5}}=>10
{{1},{2,3,6},{4},{5}}=>8
{{1},{2,3},{4,6},{5}}=>7
{{1},{2,3},{4},{5,6}}=>6
{{1},{2,3},{4},{5},{6}}=>6
{{1,4,5,6},{2},{3}}=>8
{{1,4,5},{2,6},{3}}=>11
{{1,4,5},{2},{3,6}}=>10
{{1,4,5},{2},{3},{6}}=>8
{{1,4,6},{2,5},{3}}=>11
{{1,4},{2,5,6},{3}}=>10
{{1,4},{2,5},{3,6}}=>12
{{1,4},{2,5},{3},{6}}=>10
{{1,4,6},{2},{3,5}}=>10
{{1,4},{2,6},{3,5}}=>12
{{1,4},{2},{3,5,6}}=>9
{{1,4},{2},{3,5},{6}}=>9
{{1,4,6},{2},{3},{5}}=>9
{{1,4},{2,6},{3},{5}}=>11
{{1,4},{2},{3,6},{5}}=>10
{{1,4},{2},{3},{5,6}}=>8
{{1,4},{2},{3},{5},{6}}=>8
{{1,5,6},{2,4},{3}}=>10
{{1,5},{2,4,6},{3}}=>11
{{1,5},{2,4},{3,6}}=>12
{{1,5},{2,4},{3},{6}}=>10
{{1,6},{2,4,5},{3}}=>11
{{1},{2,4,5,6},{3}}=>7
{{1},{2,4,5},{3,6}}=>9
{{1},{2,4,5},{3},{6}}=>7
{{1,6},{2,4},{3,5}}=>12
{{1},{2,4,6},{3,5}}=>9
{{1},{2,4},{3,5,6}}=>8
{{1},{2,4},{3,5},{6}}=>8
{{1,6},{2,4},{3},{5}}=>11
{{1},{2,4,6},{3},{5}}=>8
{{1},{2,4},{3,6},{5}}=>9
{{1},{2,4},{3},{5,6}}=>7
{{1},{2,4},{3},{5},{6}}=>7
{{1,5,6},{2},{3,4}}=>9
{{1,5},{2,6},{3,4}}=>12
{{1,5},{2},{3,4,6}}=>10
{{1,5},{2},{3,4},{6}}=>9
{{1,6},{2,5},{3,4}}=>12
{{1},{2,5,6},{3,4}}=>8
{{1},{2,5},{3,4,6}}=>9
{{1},{2,5},{3,4},{6}}=>8
{{1,6},{2},{3,4,5}}=>10
{{1},{2,6},{3,4,5}}=>9
{{1},{2},{3,4,5,6}}=>6
{{1},{2},{3,4,5},{6}}=>6
{{1,6},{2},{3,4},{5}}=>10
{{1},{2,6},{3,4},{5}}=>9
{{1},{2},{3,4,6},{5}}=>7
{{1},{2},{3,4},{5,6}}=>6
{{1},{2},{3,4},{5},{6}}=>6
{{1,5,6},{2},{3},{4}}=>9
{{1,5},{2,6},{3},{4}}=>12
{{1,5},{2},{3,6},{4}}=>11
{{1,5},{2},{3},{4,6}}=>10
{{1,5},{2},{3},{4},{6}}=>9
{{1,6},{2,5},{3},{4}}=>12
{{1},{2,5,6},{3},{4}}=>8
{{1},{2,5},{3,6},{4}}=>10
{{1},{2,5},{3},{4,6}}=>9
{{1},{2,5},{3},{4},{6}}=>8
{{1,6},{2},{3,5},{4}}=>11
{{1},{2,6},{3,5},{4}}=>10
{{1},{2},{3,5,6},{4}}=>7
{{1},{2},{3,5},{4,6}}=>8
{{1},{2},{3,5},{4},{6}}=>7
{{1,6},{2},{3},{4,5}}=>10
{{1},{2,6},{3},{4,5}}=>9
{{1},{2},{3,6},{4,5}}=>8
{{1},{2},{3},{4,5,6}}=>6
{{1},{2},{3},{4,5},{6}}=>6
{{1,6},{2},{3},{4},{5}}=>10
{{1},{2,6},{3},{4},{5}}=>9
{{1},{2},{3,6},{4},{5}}=>8
{{1},{2},{3},{4,6},{5}}=>7
{{1},{2},{3},{4},{5,6}}=>6
{{1},{2},{3},{4},{5},{6}}=>6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Sum of the difference between the maximal and the minimal elements of the blocks plus the number of blocks of a set partition.
This is, for a set partition $P = \{B_1,\ldots,B_k\}$ of $\{1,\ldots,n\}$, the statistic is
$$d(P) = \sum_i \big(\operatorname{max}(B_i)-\operatorname{min}(B_i)+1\big).$$
This statistic is called dimension index in [2]
This is, for a set partition $P = \{B_1,\ldots,B_k\}$ of $\{1,\ldots,n\}$, the statistic is
$$d(P) = \sum_i \big(\operatorname{max}(B_i)-\operatorname{min}(B_i)+1\big).$$
This statistic is called dimension index in [2]
References
[1] Chern, B., Diaconis, P., Kane, D. M., Rhoades, R. C. Central Limit Theorems for some Set Partition Statistics arXiv:1502.00938
[2] Grubb, T., Rajasekaran, F. Set Partition Patterns and the Dimension Index arXiv:2009.00650
[2] Grubb, T., Rajasekaran, F. Set Partition Patterns and the Dimension Index arXiv:2009.00650
Code
def statistic(S): return sum(max(B)-min(B)+1 for B in S)
Created
Feb 04, 2015 at 11:18 by Christian Stump
Updated
Sep 29, 2020 at 10:54 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!