edit this statistic or download as text // json
Identifier
Values
=>
Cc0009;cc-rep
{{1}}=>1 {{1,2}}=>1 {{1},{2}}=>3 {{1,2,3}}=>1 {{1,2},{3}}=>4 {{1,3},{2}}=>3 {{1},{2,3}}=>3 {{1},{2},{3}}=>6 {{1,2,3,4}}=>1 {{1,2,3},{4}}=>5 {{1,2,4},{3}}=>4 {{1,2},{3,4}}=>4 {{1,2},{3},{4}}=>8 {{1,3,4},{2}}=>3 {{1,3},{2,4}}=>3 {{1,3},{2},{4}}=>7 {{1,4},{2,3}}=>3 {{1},{2,3,4}}=>3 {{1},{2,3},{4}}=>7 {{1,4},{2},{3}}=>6 {{1},{2,4},{3}}=>6 {{1},{2},{3,4}}=>6 {{1},{2},{3},{4}}=>10 {{1,2,3,4,5}}=>1 {{1,2,3,4},{5}}=>6 {{1,2,3,5},{4}}=>5 {{1,2,3},{4,5}}=>5 {{1,2,3},{4},{5}}=>10 {{1,2,4,5},{3}}=>4 {{1,2,4},{3,5}}=>4 {{1,2,4},{3},{5}}=>9 {{1,2,5},{3,4}}=>4 {{1,2},{3,4,5}}=>4 {{1,2},{3,4},{5}}=>9 {{1,2,5},{3},{4}}=>8 {{1,2},{3,5},{4}}=>8 {{1,2},{3},{4,5}}=>8 {{1,2},{3},{4},{5}}=>13 {{1,3,4,5},{2}}=>3 {{1,3,4},{2,5}}=>3 {{1,3,4},{2},{5}}=>8 {{1,3,5},{2,4}}=>3 {{1,3},{2,4,5}}=>3 {{1,3},{2,4},{5}}=>8 {{1,3,5},{2},{4}}=>7 {{1,3},{2,5},{4}}=>7 {{1,3},{2},{4,5}}=>7 {{1,3},{2},{4},{5}}=>12 {{1,4,5},{2,3}}=>3 {{1,4},{2,3,5}}=>3 {{1,4},{2,3},{5}}=>8 {{1,5},{2,3,4}}=>3 {{1},{2,3,4,5}}=>3 {{1},{2,3,4},{5}}=>8 {{1,5},{2,3},{4}}=>7 {{1},{2,3,5},{4}}=>7 {{1},{2,3},{4,5}}=>7 {{1},{2,3},{4},{5}}=>12 {{1,4,5},{2},{3}}=>6 {{1,4},{2,5},{3}}=>6 {{1,4},{2},{3,5}}=>6 {{1,4},{2},{3},{5}}=>11 {{1,5},{2,4},{3}}=>6 {{1},{2,4,5},{3}}=>6 {{1},{2,4},{3,5}}=>6 {{1},{2,4},{3},{5}}=>11 {{1,5},{2},{3,4}}=>6 {{1},{2,5},{3,4}}=>6 {{1},{2},{3,4,5}}=>6 {{1},{2},{3,4},{5}}=>11 {{1,5},{2},{3},{4}}=>10 {{1},{2,5},{3},{4}}=>10 {{1},{2},{3,5},{4}}=>10 {{1},{2},{3},{4,5}}=>10 {{1},{2},{3},{4},{5}}=>15 {{1,2,3,4,5,6}}=>1 {{1,2,3,4,5},{6}}=>7 {{1,2,3,4,6},{5}}=>6 {{1,2,3,4},{5,6}}=>6 {{1,2,3,4},{5},{6}}=>12 {{1,2,3,5,6},{4}}=>5 {{1,2,3,5},{4,6}}=>5 {{1,2,3,5},{4},{6}}=>11 {{1,2,3,6},{4,5}}=>5 {{1,2,3},{4,5,6}}=>5 {{1,2,3},{4,5},{6}}=>11 {{1,2,3,6},{4},{5}}=>10 {{1,2,3},{4,6},{5}}=>10 {{1,2,3},{4},{5,6}}=>10 {{1,2,3},{4},{5},{6}}=>16 {{1,2,4,5,6},{3}}=>4 {{1,2,4,5},{3,6}}=>4 {{1,2,4,5},{3},{6}}=>10 {{1,2,4,6},{3,5}}=>4 {{1,2,4},{3,5,6}}=>4 {{1,2,4},{3,5},{6}}=>10 {{1,2,4,6},{3},{5}}=>9 {{1,2,4},{3,6},{5}}=>9 {{1,2,4},{3},{5,6}}=>9 {{1,2,4},{3},{5},{6}}=>15 {{1,2,5,6},{3,4}}=>4 {{1,2,5},{3,4,6}}=>4 {{1,2,5},{3,4},{6}}=>10 {{1,2,6},{3,4,5}}=>4 {{1,2},{3,4,5,6}}=>4 {{1,2},{3,4,5},{6}}=>10 {{1,2,6},{3,4},{5}}=>9 {{1,2},{3,4,6},{5}}=>9 {{1,2},{3,4},{5,6}}=>9 {{1,2},{3,4},{5},{6}}=>15 {{1,2,5,6},{3},{4}}=>8 {{1,2,5},{3,6},{4}}=>8 {{1,2,5},{3},{4,6}}=>8 {{1,2,5},{3},{4},{6}}=>14 {{1,2,6},{3,5},{4}}=>8 {{1,2},{3,5,6},{4}}=>8 {{1,2},{3,5},{4,6}}=>8 {{1,2},{3,5},{4},{6}}=>14 {{1,2,6},{3},{4,5}}=>8 {{1,2},{3,6},{4,5}}=>8 {{1,2},{3},{4,5,6}}=>8 {{1,2},{3},{4,5},{6}}=>14 {{1,2,6},{3},{4},{5}}=>13 {{1,2},{3,6},{4},{5}}=>13 {{1,2},{3},{4,6},{5}}=>13 {{1,2},{3},{4},{5,6}}=>13 {{1,2},{3},{4},{5},{6}}=>19 {{1,3,4,5,6},{2}}=>3 {{1,3,4,5},{2,6}}=>3 {{1,3,4,5},{2},{6}}=>9 {{1,3,4,6},{2,5}}=>3 {{1,3,4},{2,5,6}}=>3 {{1,3,4},{2,5},{6}}=>9 {{1,3,4,6},{2},{5}}=>8 {{1,3,4},{2,6},{5}}=>8 {{1,3,4},{2},{5,6}}=>8 {{1,3,4},{2},{5},{6}}=>14 {{1,3,5,6},{2,4}}=>3 {{1,3,5},{2,4,6}}=>3 {{1,3,5},{2,4},{6}}=>9 {{1,3,6},{2,4,5}}=>3 {{1,3},{2,4,5,6}}=>3 {{1,3},{2,4,5},{6}}=>9 {{1,3,6},{2,4},{5}}=>8 {{1,3},{2,4,6},{5}}=>8 {{1,3},{2,4},{5,6}}=>8 {{1,3},{2,4},{5},{6}}=>14 {{1,3,5,6},{2},{4}}=>7 {{1,3,5},{2,6},{4}}=>7 {{1,3,5},{2},{4,6}}=>7 {{1,3,5},{2},{4},{6}}=>13 {{1,3,6},{2,5},{4}}=>7 {{1,3},{2,5,6},{4}}=>7 {{1,3},{2,5},{4,6}}=>7 {{1,3},{2,5},{4},{6}}=>13 {{1,3,6},{2},{4,5}}=>7 {{1,3},{2,6},{4,5}}=>7 {{1,3},{2},{4,5,6}}=>7 {{1,3},{2},{4,5},{6}}=>13 {{1,3,6},{2},{4},{5}}=>12 {{1,3},{2,6},{4},{5}}=>12 {{1,3},{2},{4,6},{5}}=>12 {{1,3},{2},{4},{5,6}}=>12 {{1,3},{2},{4},{5},{6}}=>18 {{1,4,5,6},{2,3}}=>3 {{1,4,5},{2,3,6}}=>3 {{1,4,5},{2,3},{6}}=>9 {{1,4,6},{2,3,5}}=>3 {{1,4},{2,3,5,6}}=>3 {{1,4},{2,3,5},{6}}=>9 {{1,4,6},{2,3},{5}}=>8 {{1,4},{2,3,6},{5}}=>8 {{1,4},{2,3},{5,6}}=>8 {{1,4},{2,3},{5},{6}}=>14 {{1,5,6},{2,3,4}}=>3 {{1,5},{2,3,4,6}}=>3 {{1,5},{2,3,4},{6}}=>9 {{1,6},{2,3,4,5}}=>3 {{1},{2,3,4,5,6}}=>3 {{1},{2,3,4,5},{6}}=>9 {{1,6},{2,3,4},{5}}=>8 {{1},{2,3,4,6},{5}}=>8 {{1},{2,3,4},{5,6}}=>8 {{1},{2,3,4},{5},{6}}=>14 {{1,5,6},{2,3},{4}}=>7 {{1,5},{2,3,6},{4}}=>7 {{1,5},{2,3},{4,6}}=>7 {{1,5},{2,3},{4},{6}}=>13 {{1,6},{2,3,5},{4}}=>7 {{1},{2,3,5,6},{4}}=>7 {{1},{2,3,5},{4,6}}=>7 {{1},{2,3,5},{4},{6}}=>13 {{1,6},{2,3},{4,5}}=>7 {{1},{2,3,6},{4,5}}=>7 {{1},{2,3},{4,5,6}}=>7 {{1},{2,3},{4,5},{6}}=>13 {{1,6},{2,3},{4},{5}}=>12 {{1},{2,3,6},{4},{5}}=>12 {{1},{2,3},{4,6},{5}}=>12 {{1},{2,3},{4},{5,6}}=>12 {{1},{2,3},{4},{5},{6}}=>18 {{1,4,5,6},{2},{3}}=>6 {{1,4,5},{2,6},{3}}=>6 {{1,4,5},{2},{3,6}}=>6 {{1,4,5},{2},{3},{6}}=>12 {{1,4,6},{2,5},{3}}=>6 {{1,4},{2,5,6},{3}}=>6 {{1,4},{2,5},{3,6}}=>6 {{1,4},{2,5},{3},{6}}=>12 {{1,4,6},{2},{3,5}}=>6 {{1,4},{2,6},{3,5}}=>6 {{1,4},{2},{3,5,6}}=>6 {{1,4},{2},{3,5},{6}}=>12 {{1,4,6},{2},{3},{5}}=>11 {{1,4},{2,6},{3},{5}}=>11 {{1,4},{2},{3,6},{5}}=>11 {{1,4},{2},{3},{5,6}}=>11 {{1,4},{2},{3},{5},{6}}=>17 {{1,5,6},{2,4},{3}}=>6 {{1,5},{2,4,6},{3}}=>6 {{1,5},{2,4},{3,6}}=>6 {{1,5},{2,4},{3},{6}}=>12 {{1,6},{2,4,5},{3}}=>6 {{1},{2,4,5,6},{3}}=>6 {{1},{2,4,5},{3,6}}=>6 {{1},{2,4,5},{3},{6}}=>12 {{1,6},{2,4},{3,5}}=>6 {{1},{2,4,6},{3,5}}=>6 {{1},{2,4},{3,5,6}}=>6 {{1},{2,4},{3,5},{6}}=>12 {{1,6},{2,4},{3},{5}}=>11 {{1},{2,4,6},{3},{5}}=>11 {{1},{2,4},{3,6},{5}}=>11 {{1},{2,4},{3},{5,6}}=>11 {{1},{2,4},{3},{5},{6}}=>17 {{1,5,6},{2},{3,4}}=>6 {{1,5},{2,6},{3,4}}=>6 {{1,5},{2},{3,4,6}}=>6 {{1,5},{2},{3,4},{6}}=>12 {{1,6},{2,5},{3,4}}=>6 {{1},{2,5,6},{3,4}}=>6 {{1},{2,5},{3,4,6}}=>6 {{1},{2,5},{3,4},{6}}=>12 {{1,6},{2},{3,4,5}}=>6 {{1},{2,6},{3,4,5}}=>6 {{1},{2},{3,4,5,6}}=>6 {{1},{2},{3,4,5},{6}}=>12 {{1,6},{2},{3,4},{5}}=>11 {{1},{2,6},{3,4},{5}}=>11 {{1},{2},{3,4,6},{5}}=>11 {{1},{2},{3,4},{5,6}}=>11 {{1},{2},{3,4},{5},{6}}=>17 {{1,5,6},{2},{3},{4}}=>10 {{1,5},{2,6},{3},{4}}=>10 {{1,5},{2},{3,6},{4}}=>10 {{1,5},{2},{3},{4,6}}=>10 {{1,5},{2},{3},{4},{6}}=>16 {{1,6},{2,5},{3},{4}}=>10 {{1},{2,5,6},{3},{4}}=>10 {{1},{2,5},{3,6},{4}}=>10 {{1},{2,5},{3},{4,6}}=>10 {{1},{2,5},{3},{4},{6}}=>16 {{1,6},{2},{3,5},{4}}=>10 {{1},{2,6},{3,5},{4}}=>10 {{1},{2},{3,5,6},{4}}=>10 {{1},{2},{3,5},{4,6}}=>10 {{1},{2},{3,5},{4},{6}}=>16 {{1,6},{2},{3},{4,5}}=>10 {{1},{2,6},{3},{4,5}}=>10 {{1},{2},{3,6},{4,5}}=>10 {{1},{2},{3},{4,5,6}}=>10 {{1},{2},{3},{4,5},{6}}=>16 {{1,6},{2},{3},{4},{5}}=>15 {{1},{2,6},{3},{4},{5}}=>15 {{1},{2},{3,6},{4},{5}}=>15 {{1},{2},{3},{4,6},{5}}=>15 {{1},{2},{3},{4},{5,6}}=>15 {{1},{2},{3},{4},{5},{6}}=>21
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Sum of the minimal elements of the blocks of a set partition.
References
[1] Chern, B., Diaconis, P., Kane, D. M., Rhoades, R. C. Central Limit Theorems for some Set Partition Statistics arXiv:1502.00938
Code
def statistic(S):
    return sum(min(B) for B in S)

Created
Feb 04, 2015 at 11:13 by Christian Stump
Updated
Oct 19, 2015 at 16:31 by Christian Stump