Identifier
Values
[] => 0
[1] => 0
[2] => 1
[1,1] => 0
[3] => 1
[2,1] => 0
[1,1,1] => 0
[4] => 1
[3,1] => 1
[2,2] => 1
[2,1,1] => 0
[1,1,1,1] => 0
[5] => 1
[4,1] => 1
[3,2] => 1
[3,1,1] => 1
[2,2,1] => 0
[2,1,1,1] => 0
[1,1,1,1,1] => 0
[6] => 1
[5,1] => 1
[4,2] => 2
[4,1,1] => 1
[3,3] => 1
[3,2,1] => 0
[3,1,1,1] => 1
[2,2,2] => 1
[2,2,1,1] => 0
[2,1,1,1,1] => 0
[1,1,1,1,1,1] => 0
[7] => 1
[6,1] => 1
[5,2] => 2
[5,1,1] => 1
[4,3] => 1
[4,2,1] => 1
[4,1,1,1] => 1
[3,3,1] => 1
[3,2,2] => 1
[3,2,1,1] => 0
[3,1,1,1,1] => 1
[2,2,2,1] => 0
[2,2,1,1,1] => 0
[2,1,1,1,1,1] => 0
[1,1,1,1,1,1,1] => 0
[8] => 1
[7,1] => 1
[6,2] => 2
[6,1,1] => 1
[5,3] => 2
[5,2,1] => 1
[5,1,1,1] => 1
[4,4] => 1
[4,3,1] => 1
[4,2,2] => 2
[4,2,1,1] => 1
[4,1,1,1,1] => 1
[3,3,2] => 1
[3,3,1,1] => 1
[3,2,2,1] => 0
[3,2,1,1,1] => 0
[3,1,1,1,1,1] => 1
[2,2,2,2] => 1
[2,2,2,1,1] => 0
[2,2,1,1,1,1] => 0
[2,1,1,1,1,1,1] => 0
[1,1,1,1,1,1,1,1] => 0
[9] => 1
[8,1] => 1
[7,2] => 2
[7,1,1] => 1
[6,3] => 2
[6,2,1] => 1
[6,1,1,1] => 1
[5,4] => 1
[5,3,1] => 2
[5,2,2] => 2
[5,2,1,1] => 1
[5,1,1,1,1] => 1
[4,4,1] => 1
[4,3,2] => 1
[4,3,1,1] => 1
[4,2,2,1] => 1
[4,2,1,1,1] => 1
[4,1,1,1,1,1] => 1
[3,3,3] => 1
[3,3,2,1] => 0
[3,3,1,1,1] => 1
[3,2,2,2] => 1
[3,2,2,1,1] => 0
[3,2,1,1,1,1] => 0
[3,1,1,1,1,1,1] => 1
[2,2,2,2,1] => 0
[2,2,2,1,1,1] => 0
[2,2,1,1,1,1,1] => 0
[2,1,1,1,1,1,1,1] => 0
[1,1,1,1,1,1,1,1,1] => 0
[10] => 1
[9,1] => 1
[8,2] => 2
[8,1,1] => 1
>>> Load all 139 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of parts from which one can substract 2 and still get an integer partition.
References
[1] Tewari, V. V. Kronecker coefficients for some near-rectangular partitions MathSciNet:3320625 arXiv:1403.5327
Code
def statistic(x):
x = list(x)+[0]
return sum( 1 for i in range(len(x)-1) if x[i]-2 >= x[i+1] )
Created
Jul 14, 2015 at 21:39 by Christian Stump
Updated
Oct 29, 2017 at 16:37 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!