Identifier
-
Mp00046:
Ordered trees
—to graph⟶
Graphs
St000258: Graphs ⟶ ℤ
Values
[] => ([],1) => 1
[[]] => ([(0,1)],2) => 2
[[],[]] => ([(0,2),(1,2)],3) => 2
[[[]]] => ([(0,2),(1,2)],3) => 2
[[],[],[]] => ([(0,3),(1,3),(2,3)],4) => 2
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => 2
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => 2
[[[],[]]] => ([(0,3),(1,3),(2,3)],4) => 2
[[[[]]]] => ([(0,3),(1,2),(2,3)],4) => 2
[[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 2
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 2
[[],[[],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 2
[[],[[[]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => 3
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 2
[[[]],[[]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => 3
[[[],[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 2
[[[[]]],[]] => ([(0,4),(1,3),(2,3),(2,4)],5) => 3
[[[],[],[]]] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[[[],[[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 2
[[[[]],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 2
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 2
[[[[[]]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => 3
[[],[],[],[],[]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[[],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 3
[[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[],[[],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[[],[[],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 3
[[],[[[]],[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 3
[[],[[[],[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[],[[[[]]]]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 3
[[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[[[]],[],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 3
[[[]],[[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 3
[[[]],[[],[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[[]],[[[]]]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 3
[[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[[],[]],[[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[[[]]],[[]]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 3
[[[],[],[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[[[],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 3
[[[[]],[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 3
[[[[],[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[[[[]]]],[]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 3
[[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[[],[],[[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[[[],[[]],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[[],[[[]]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[[[]],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 3
[[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[[[[]]],[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[[[[],[[]]]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 3
[[[[[]],[]]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 3
[[[[[],[]]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[[[[[]]]]]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 3
[[],[],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[[],[],[],[],[[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 2
[[],[],[],[[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 2
[[],[],[],[[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 3
[[],[],[],[[[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 3
[[],[],[[]],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 2
[[],[],[[]],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[],[[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 3
[[],[],[[[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 3
[[],[],[[],[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 3
[[],[],[[],[[]]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[],[[[]],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 3
[[],[],[[[[]]]]] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 3
[[],[[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 2
[[],[[]],[],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[[]],[[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[[]],[[],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[[]],[[[]]]] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 3
[[],[[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 3
[[],[[[]]],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 3
[[],[[],[]],[[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[[[]]],[[]]] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 3
[[],[[],[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 3
[[],[[],[[]]],[]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[[[]],[]],[]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[[[],[]]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 3
[[],[[[[]]]],[]] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 3
[[],[[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 2
[[],[[],[],[[]]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[[],[[]],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[[],[[],[]]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[[],[[[]]]]] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 3
[[],[[[]],[],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 3
[[],[[[],[]],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 3
>>> Load all 197 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The burning number of a graph.
This is the minimum number of rounds needed to burn all vertices of a graph. In each round, the neighbours of all burned vertices are burnt. Additionally, an unburned vertex may be chosen to be burned.
This is the minimum number of rounds needed to burn all vertices of a graph. In each round, the neighbours of all burned vertices are burnt. Additionally, an unburned vertex may be chosen to be burned.
Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!