Identifier
Values
([],1) => ([],1) => ([],1) => 0
([],2) => ([],1) => ([],1) => 0
([],3) => ([],1) => ([],1) => 0
([(1,2)],3) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([],4) => ([],1) => ([],1) => 0
([(2,3)],4) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,3),(2,3)],4) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([],5) => ([],1) => ([],1) => 0
([(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,4),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,4),(2,3)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(2,3),(2,4),(3,4)],5) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([],6) => ([],1) => ([],1) => 0
([(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(2,5),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(2,5),(3,4)],6) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(1,2),(3,5),(4,5)],6) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(3,4),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 3
([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 4
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 4
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 3
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 5
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 4
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 4
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([],7) => ([],1) => ([],1) => 0
([(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(2,6),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(3,6),(4,5)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(2,3),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(1,2),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
([(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,6),(2,6),(3,5),(4,5)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 3
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 3
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(1,6),(2,5),(3,4)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
>>> Load all 277 entries. <<<
([(2,6),(3,5),(4,5),(4,6)],7) => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 3
([(1,2),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 4
([(2,3),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) => 4
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 3
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 3
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,4),(4,5),(6,5)],7) => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 4
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 3
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 6
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 4
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 3
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 4
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) => 3
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 5
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(1,6),(2,3),(3,6),(4,5),(6,5)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => 5
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 3
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 4
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 5
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 4
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 4
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 3
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 3
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => 3
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 3
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 3
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 3
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5)],7) => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 5
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 3
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 4
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 4
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 3
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 3
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 4
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 4
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,4),(1,5),(2,3),(3,5),(3,6)],7) => ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7) => 4
([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 5
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 4
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 5
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(2,3),(3,5),(4,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 6
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 5
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 4
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,3),(2,4),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 5
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,5),(2,3),(3,6),(4,6),(5,4)],7) => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 5
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 4
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 4
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,6),(3,5),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 4
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7) => 4
([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,4),(1,5),(2,3),(2,5),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => 3
([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 3
([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 4
([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => 4
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,3),(1,5),(2,4),(2,5),(4,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 6
([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => 3
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 3
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) => ([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) => 4
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(3,5),(4,6)],7) => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 5
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 3
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 4
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 4
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 3
([(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 5
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 4
([(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 5
([(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,3),(2,4),(2,5),(3,6),(4,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 6
([(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 4
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 3
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 4
([(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,4),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => 4
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) => ([(0,5),(1,5),(1,6),(2,3),(3,6),(5,4)],7) => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 5
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,4),(3,4),(3,6),(4,5),(6,5)],7) => ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 4
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 4
([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) => 3
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 4
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,4),(3,4),(3,6),(4,5)],7) => ([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7) => 4
([(0,6),(1,5),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(2,3),(3,5),(4,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 6
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,4),(2,5),(3,4),(3,5),(5,6)],7) => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 5
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 4
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 4
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 4
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 3
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 3
([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(0,5),(1,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5)],7) => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 5
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 3
([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 3
([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 4
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 4
([(0,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 4
([(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 3
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 3
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(0,6),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(2,3),(3,5),(4,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 6
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 4
([(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(2,3),(2,5),(4,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 6
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 4
([(0,6),(1,3),(1,5),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,5),(2,6),(3,4),(4,6)],7) => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 5
([(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 4
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,4),(4,5),(6,5)],7) => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 4
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5)],7) => ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 3
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 4
([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 4
([(0,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(1,6),(2,5),(2,6),(3,4),(4,6)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => 5
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 4
([(0,6),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,5),(2,5),(3,4),(3,6),(5,6)],7) => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 5
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5)],7) => ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7) => 4
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(4,5)],7) => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 5
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,5),(2,6),(3,4),(4,6)],7) => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 5
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 6
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 4
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 3
([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 3
([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 4
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 5
([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 4
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 4
([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 3
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,5),(2,5),(3,4),(3,6),(5,6)],7) => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 5
([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 3
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 4
([(0,3),(0,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 4
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 4
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 6
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(0,3),(0,6),(1,2),(1,5),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 6
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 4
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 4
([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Map
weak duplicate order
Description
The weak duplicate order of the de-duplicate of a graph.
Let $G=(V, E)$ be a graph and let $N=\{ N_v | v\in V\}$ be the set of (distinct) neighbourhoods of $G$.
This map yields the poset obtained by ordering $N$ by reverse inclusion.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.