Identifier
Values
[1,0] => ([],1) => ([],1) => 0
[1,1,0,0] => ([],2) => ([(0,1)],2) => 1
[1,1,0,1,0,0] => ([(1,2)],3) => ([(0,2),(1,2)],3) => 1
[1,1,1,0,0,0] => ([],3) => ([(0,1),(0,2),(1,2)],3) => 1
[1,1,0,1,0,1,0,0] => ([(0,3),(1,2),(1,3)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[1,1,0,1,1,0,0,0] => ([(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
[1,1,1,0,0,1,0,0] => ([(1,2),(1,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
[1,1,1,0,1,0,0,0] => ([(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[1,1,1,1,0,0,0,0] => ([],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[1,1,0,1,0,1,0,1,0,0] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,0,1,0,1,1,0,0,0] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 2
[1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,2),(1,3),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 2
[1,1,0,1,1,0,1,0,0,0] => ([(0,4),(1,4),(2,3),(2,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 2
[1,1,0,1,1,1,0,0,0,0] => ([(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,1,1,0,0,1,0,1,0,0] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 2
[1,1,1,0,0,1,1,0,0,0] => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 1
[1,1,1,0,1,0,0,1,0,0] => ([(0,4),(1,2),(1,3),(1,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 2
[1,1,1,0,1,0,1,0,0,0] => ([(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,1,1,0,1,1,0,0,0,0] => ([(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,1,1,1,0,0,0,1,0,0] => ([(1,2),(1,3),(1,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,1,1,1,0,0,1,0,0,0] => ([(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,1,1,1,0,1,0,0,0,0] => ([(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,1,1,1,1,0,0,0,0,0] => ([],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,1,0,1,0,1,0,1,0,1,0,0] => ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 3
[1,1,0,1,0,1,0,1,1,0,0,0] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => 2
[1,1,0,1,0,1,1,0,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,0,1,0,1,1,0,1,0,0,0] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => 2
[1,1,0,1,0,1,1,1,0,0,0,0] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,0,1,1,0,0,1,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(5,3)],6) => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,0,1,1,0,0,1,1,0,0,0] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(4,5)],6) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,0,1,1,0,1,0,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 2
[1,1,0,1,1,0,1,0,1,0,0,0] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[1,1,0,1,1,0,1,1,0,0,0,0] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,0,1,1,1,0,0,0,1,0,0] => ([(0,5),(1,2),(1,3),(1,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,0,1,1,1,0,0,1,0,0,0] => ([(0,5),(1,5),(2,3),(2,4),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,0,1,1,1,0,1,0,0,0,0] => ([(0,5),(1,5),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,0,1,1,1,1,0,0,0,0,0] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,0,0,1,0,1,0,1,0,0] => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => 2
[1,1,1,0,0,1,0,1,1,0,0,0] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => 2
[1,1,1,0,0,1,1,0,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,3),(3,4),(3,5)],6) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,0,0,1,1,0,1,0,0,0] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,0,0,1,1,1,0,0,0,0] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,0,1,0,0,1,0,1,0,0] => ([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,0,1,0,0,1,1,0,0,0] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,0,1,0,1,0,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6) => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,0,1,0,1,0,1,0,0,0] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,0,1,0,1,1,0,0,0,0] => ([(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,0,1,1,0,0,0,1,0,0] => ([(0,5),(1,2),(1,3),(1,4),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,0,1,1,0,0,1,0,0,0] => ([(0,5),(1,5),(2,3),(2,4),(2,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,0,1,1,0,1,0,0,0,0] => ([(1,5),(2,5),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,0,1,1,1,0,0,0,0,0] => ([(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,1,0,0,0,1,0,1,0,0] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,1,0,0,0,1,1,0,0,0] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,1,0,0,1,0,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,1,0,0,1,0,1,0,0,0] => ([(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,1,0,0,1,1,0,0,0,0] => ([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,1,0,1,0,0,0,1,0,0] => ([(0,5),(1,2),(1,3),(1,4),(1,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,1,0,1,0,0,1,0,0,0] => ([(1,5),(2,3),(2,4),(2,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,1,0,1,0,1,0,0,0,0] => ([(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,1,0,1,1,0,0,0,0,0] => ([(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,1,1,0,0,0,0,1,0,0] => ([(1,2),(1,3),(1,4),(1,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,1,1,0,0,0,1,0,0,0] => ([(2,3),(2,4),(2,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,1,1,0,0,1,0,0,0,0] => ([(3,4),(3,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,1,1,0,1,0,0,0,0,0] => ([(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,1,1,1,0,0,0,0,0,0] => ([],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0] => ([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(5,3),(6,3),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 3
[1,1,0,1,0,1,0,1,0,1,1,0,0,0] => ([(0,3),(0,6),(1,3),(1,6),(2,4),(2,6),(3,4),(3,5),(6,5)],7) => ([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7) => 3
[1,1,0,1,0,1,0,1,1,0,0,1,0,0] => ([(0,4),(0,6),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7) => 3
[1,1,0,1,0,1,0,1,1,0,1,0,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(5,4)],7) => ([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7) => 3
[1,1,0,1,0,1,0,1,1,1,0,0,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(5,4)],7) => ([(0,2),(1,2),(1,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,1,0,1,0,1,1,0,0,1,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,6),(4,6),(5,3),(5,6)],7) => ([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) => 3
[1,1,0,1,0,1,1,0,0,1,1,0,0,0] => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => 2
[1,1,0,1,0,1,1,0,1,0,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6)],7) => ([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 3
[1,1,0,1,0,1,1,0,1,0,1,0,0,0] => ([(0,5),(0,6),(1,4),(1,5),(2,3),(2,4),(3,5),(3,6),(4,6)],7) => ([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,0,1,1,0,1,1,0,0,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) => ([(0,1),(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,1,0,1,0,1,1,1,0,0,0,1,0,0] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,1,0,1,0,1,1,1,0,0,1,0,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,1,0,1,0,1,1,1,0,1,0,0,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => ([(0,1),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,1,0,1,0,1,1,1,1,0,0,0,0,0] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,1,0,1,1,0,0,1,0,1,0,1,0,0] => ([(0,2),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(5,3),(6,3)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7) => 3
[1,1,0,1,1,0,0,1,0,1,1,0,0,0] => ([(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(6,4)],7) => ([(0,6),(1,2),(1,4),(2,4),(3,5),(3,6),(4,5),(5,6)],7) => 2
[1,1,0,1,1,0,0,1,1,0,0,1,0,0] => ([(0,2),(0,3),(1,4),(1,6),(2,5),(3,4),(3,6),(6,5)],7) => ([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,1,0,0,1,1,0,1,0,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(6,4)],7) => ([(0,5),(1,3),(1,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,1,0,0,1,1,1,0,0,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(6,4)],7) => ([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,1,0,1,0,0,1,0,1,0,0] => ([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,6),(4,6),(5,6)],7) => ([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 3
[1,1,0,1,1,0,1,0,0,1,1,0,0,0] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6)],7) => ([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 2
[1,1,0,1,1,0,1,0,1,0,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,6),(3,5),(3,6),(4,6)],7) => ([(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,1,0,1,0,1,0,1,0,0,0] => ([(0,5),(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6)],7) => ([(0,4),(1,3),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => 2
[1,1,0,1,1,0,1,0,1,1,0,0,0,0] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6)],7) => ([(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,1,0,1,1,0,0,0,1,0,0] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,6),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 2
[1,1,0,1,1,0,1,1,0,0,1,0,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,6),(4,6)],7) => ([(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,1,0,1,1,0,1,1,0,1,0,0,0,0] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => ([(0,2),(1,4),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,1,0,1,1,0,1,1,1,0,0,0,0,0] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,1,0,1,1,1,0,0,0,1,0,1,0,0] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(4,6),(5,6)],7) => ([(0,5),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,1,0,1,1,1,0,0,0,1,1,0,0,0] => ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(4,6),(5,6)],7) => ([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,1,0,1,1,1,0,0,1,0,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(5,6)],7) => ([(0,6),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 2
[1,1,0,1,1,1,0,0,1,0,1,0,0,0] => ([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(5,6)],7) => ([(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,1,0,1,1,1,0,0,1,1,0,0,0,0] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) => ([(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,1,0,1,1,1,0,1,0,0,0,1,0,0] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 2
[1,1,0,1,1,1,0,1,0,0,1,0,0,0] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,6),(4,6)],7) => ([(0,5),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,1,1,0,1,0,1,0,0,0,0] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => ([(0,4),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
>>> Load all 197 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
This is the minimum eccentricity of any vertex.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
Hessenberg poset
Description
The Hessenberg poset of a Dyck path.
Let $D$ be a Dyck path of semilength $n$, regarded as a subdiagonal path from $(0,0)$ to $(n,n)$, and let $\boldsymbol{m}_i$ be the $x$-coordinate of the $i$-th up step.
Then the Hessenberg poset (or natural unit interval order) corresponding to $D$ has elements $\{1,\dots,n\}$ with $i < j$ if $j < \boldsymbol{m}_i$.
Let $D$ be a Dyck path of semilength $n$, regarded as a subdiagonal path from $(0,0)$ to $(n,n)$, and let $\boldsymbol{m}_i$ be the $x$-coordinate of the $i$-th up step.
Then the Hessenberg poset (or natural unit interval order) corresponding to $D$ has elements $\{1,\dots,n\}$ with $i < j$ if $j < \boldsymbol{m}_i$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!