Identifier
Values
[[.,.],[[.,.],[.,.]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[[[.,.],[.,.]],[.,.]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[.,[[.,.],[[.,.],[.,.]]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[.,[[[.,.],[.,.]],[.,.]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[.,.],[.,[[.,.],[.,.]]]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[.,.],[[.,.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[.,.],[[.,.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[.,.],[[.,[.,.]],[.,.]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[.,.],[[[.,.],.],[.,.]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[.,.],[[[.,.],[.,.]],.]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[.,[.,.]],[[.,.],[.,.]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[[.,.],.],[[.,.],[.,.]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[[.,.],[.,.]],[.,[.,.]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[[.,.],[.,.]],[[.,.],.]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[.,[[.,.],[.,.]]],[.,.]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[[.,.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[[.,.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[[.,[.,.]],[.,.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[[[.,.],.],[.,.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[[[.,.],[.,.]],.],[.,.]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[[.,.],[[.,.],[.,.]]],.] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[[[[.,.],[.,.]],[.,.]],.] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
search for individual values
searching the database for the individual values of this statistic
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
This is the length of the shortest cycle in the graph.
Map
core
Description
The core of a graph.
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.
Map
incomparability graph
Description
The incomparability graph of a poset.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!