Identifier
-
Mp00107:
Semistandard tableaux
—catabolism⟶
Semistandard tableaux
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤ
Values
[[1,4],[2],[3]] => [[1,2],[3],[4]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1],[2],[3],[4]] => [[1,2],[3],[4]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1,5],[2],[3]] => [[1,2],[3],[5]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1,5],[2],[4]] => [[1,2],[4],[5]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1,5],[3],[4]] => [[1,3],[4],[5]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[2,5],[3],[4]] => [[2,3],[4],[5]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1],[2],[3],[5]] => [[1,2],[3],[5]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1],[2],[4],[5]] => [[1,2],[4],[5]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1],[3],[4],[5]] => [[1,3],[4],[5]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[2],[3],[4],[5]] => [[2,3],[4],[5]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1,1,4],[2],[3]] => [[1,1,2],[3],[4]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,2,4],[2],[3]] => [[1,2,2],[3],[4]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,3,4],[2],[3]] => [[1,2,3],[3],[4]] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,4,4],[2],[3]] => [[1,2,4],[3],[4]] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,1],[2],[3],[4]] => [[1,1,2],[3],[4]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,2],[2],[3],[4]] => [[1,2,2],[3],[4]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,3],[2],[3],[4]] => [[1,2,3],[3],[4]] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,4],[2],[3],[4]] => [[1,2,4],[3],[4]] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,1,3,3],[2,2]] => [[1,1,2,2],[3,3]] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[[1,1,3],[2,2],[3]] => [[1,1,2,2],[3,3]] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[[1,1],[2,2],[3,3]] => [[1,1,2,2],[3,3]] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[[1,6],[2],[3]] => [[1,2],[3],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1,6],[2],[4]] => [[1,2],[4],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1,6],[2],[5]] => [[1,2],[5],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1,6],[3],[4]] => [[1,3],[4],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1,6],[3],[5]] => [[1,3],[5],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1,6],[4],[5]] => [[1,4],[5],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[2,6],[3],[4]] => [[2,3],[4],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[2,6],[3],[5]] => [[2,3],[5],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[2,6],[4],[5]] => [[2,4],[5],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[3,6],[4],[5]] => [[3,4],[5],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1],[2],[3],[6]] => [[1,2],[3],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1],[2],[4],[6]] => [[1,2],[4],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1],[2],[5],[6]] => [[1,2],[5],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1],[3],[4],[6]] => [[1,3],[4],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1],[3],[5],[6]] => [[1,3],[5],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1],[4],[5],[6]] => [[1,4],[5],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[2],[3],[4],[6]] => [[2,3],[4],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[2],[3],[5],[6]] => [[2,3],[5],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[2],[4],[5],[6]] => [[2,4],[5],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[3],[4],[5],[6]] => [[3,4],[5],[6]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[1,3,5],[2,4]] => [[1,2,4],[3,5]] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 4
[[1,1,5],[2],[3]] => [[1,1,2],[3],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,1,5],[2],[4]] => [[1,1,2],[4],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,1,5],[3],[4]] => [[1,1,3],[4],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,2,5],[2],[3]] => [[1,2,2],[3],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,2,5],[2],[4]] => [[1,2,2],[4],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,3,5],[2],[3]] => [[1,2,3],[3],[5]] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,2,5],[3],[4]] => [[1,2,3],[4],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,3,5],[2],[4]] => [[1,2,4],[3],[5]] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,4,5],[2],[3]] => [[1,2,5],[3],[4]] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,5,5],[2],[3]] => [[1,2,5],[3],[5]] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,4,5],[2],[4]] => [[1,2,4],[4],[5]] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,5,5],[2],[4]] => [[1,2,5],[4],[5]] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,3,5],[3],[4]] => [[1,3,3],[4],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,4,5],[3],[4]] => [[1,3,4],[4],[5]] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,5,5],[3],[4]] => [[1,3,5],[4],[5]] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[2,2,5],[3],[4]] => [[2,2,3],[4],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[2,3,5],[3],[4]] => [[2,3,3],[4],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[2,4,5],[3],[4]] => [[2,3,4],[4],[5]] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[2,5,5],[3],[4]] => [[2,3,5],[4],[5]] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,3],[2,4],[5]] => [[1,2,4],[3,5]] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 4
[[1,4],[2,5],[3]] => [[1,2,5],[3],[4]] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,1],[2],[3],[5]] => [[1,1,2],[3],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,1],[2],[4],[5]] => [[1,1,2],[4],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,1],[3],[4],[5]] => [[1,1,3],[4],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,2],[2],[3],[5]] => [[1,2,2],[3],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,2],[2],[4],[5]] => [[1,2,2],[4],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,3],[2],[3],[5]] => [[1,2,3],[3],[5]] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,2],[3],[4],[5]] => [[1,2,3],[4],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,3],[2],[4],[5]] => [[1,2,4],[3],[5]] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,4],[2],[3],[5]] => [[1,2,5],[3],[4]] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,5],[2],[3],[4]] => [[1,2],[3],[4],[5]] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,5],[2],[3],[5]] => [[1,2,5],[3],[5]] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,4],[2],[4],[5]] => [[1,2,4],[4],[5]] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,5],[2],[4],[5]] => [[1,2,5],[4],[5]] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,3],[3],[4],[5]] => [[1,3,3],[4],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,4],[3],[4],[5]] => [[1,3,4],[4],[5]] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,5],[3],[4],[5]] => [[1,3,5],[4],[5]] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[2,2],[3],[4],[5]] => [[2,2,3],[4],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[2,3],[3],[4],[5]] => [[2,3,3],[4],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[2,4],[3],[4],[5]] => [[2,3,4],[4],[5]] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[2,5],[3],[4],[5]] => [[2,3,5],[4],[5]] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1],[2],[3],[4],[5]] => [[1,2],[3],[4],[5]] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,1,3,4],[2,2]] => [[1,1,2,2],[3,4]] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[[1,1,4,4],[2,2]] => [[1,1,2,2],[4,4]] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[[1,1,3,4],[2,3]] => [[1,1,2,3],[3,4]] => [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[[1,1,4,4],[2,3]] => [[1,1,2,3],[4,4]] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[[1,1,4,4],[3,3]] => [[1,1,3,3],[4,4]] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[[1,2,3,4],[2,3]] => [[1,2,2,3],[3,4]] => [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[[1,2,4,4],[2,3]] => [[1,2,2,3],[4,4]] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[[1,2,4,4],[3,3]] => [[1,2,3,3],[4,4]] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[[2,2,4,4],[3,3]] => [[2,2,3,3],[4,4]] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[[1,1,1,4],[2],[3]] => [[1,1,1,2],[3],[4]] => [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,1,2,4],[2],[3]] => [[1,1,2,2],[3],[4]] => [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,1,3,4],[2],[3]] => [[1,1,2,3],[3],[4]] => [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,1,4,4],[2],[3]] => [[1,1,2,4],[3],[4]] => [5,4,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,2,2,4],[2],[3]] => [[1,2,2,2],[3],[4]] => [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,2,3,4],[2],[3]] => [[1,2,2,3],[3],[4]] => [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,2,4,4],[2],[3]] => [[1,2,2,4],[3],[4]] => [5,4,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,3,3,4],[2],[3]] => [[1,2,3,3],[3],[4]] => [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
>>> Load all 205 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
This is the length of the shortest cycle in the graph.
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottommost row (in English notation).
Map
catabolism
Description
Remove the first row of the semistandard tableau and insert it back using column Schensted insertion, starting with the largest number.
The algorithm for column-inserting an entry $k$ into tableau $T$ is as follows:
If $k$ is larger than all entries in the first column, place $k$ at the bottom of the first column and the procedure is finished. Otherwise, place $k$ in the first column, replacing the smallest entry, $y$, greater or equal to than $k$. Now insert $y$ into the second column using the same procedure: if $y$ is greater than all entries in the second column, place it at the bottom of that column (provided that the result is still a tableau). Otherwise, place $y$ in the second column, replacing, or 'bumping', the smallest entry, $z$, larger than or equal to $y$. Continue the procedure until we have placed a bumped entry at the bottom of a column (or on its own in a new column).
The algorithm for column-inserting an entry $k$ into tableau $T$ is as follows:
If $k$ is larger than all entries in the first column, place $k$ at the bottom of the first column and the procedure is finished. Otherwise, place $k$ in the first column, replacing the smallest entry, $y$, greater or equal to than $k$. Now insert $y$ into the second column using the same procedure: if $y$ is greater than all entries in the second column, place it at the bottom of that column (provided that the result is still a tableau). Otherwise, place $y$ in the second column, replacing, or 'bumping', the smallest entry, $z$, larger than or equal to $y$. Continue the procedure until we have placed a bumped entry at the bottom of a column (or on its own in a new column).
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!