Values
=>
Cc0020;cc-rep
([],1)=>0
([],2)=>0
([(0,1)],2)=>1
([],3)=>0
([(1,2)],3)=>0
([(0,2),(1,2)],3)=>0
([(0,1),(0,2),(1,2)],3)=>0
([],4)=>0
([(2,3)],4)=>0
([(1,3),(2,3)],4)=>0
([(0,3),(1,3),(2,3)],4)=>0
([(0,3),(1,2)],4)=>1
([(0,3),(1,2),(2,3)],4)=>1
([(1,2),(1,3),(2,3)],4)=>0
([(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,2),(0,3),(1,2),(1,3)],4)=>2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>3
([],5)=>0
([(3,4)],5)=>0
([(2,4),(3,4)],5)=>0
([(1,4),(2,4),(3,4)],5)=>0
([(0,4),(1,4),(2,4),(3,4)],5)=>0
([(1,4),(2,3)],5)=>0
([(1,4),(2,3),(3,4)],5)=>0
([(0,1),(2,4),(3,4)],5)=>0
([(2,3),(2,4),(3,4)],5)=>0
([(0,4),(1,4),(2,3),(3,4)],5)=>0
([(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>0
([(1,3),(1,4),(2,3),(2,4)],5)=>0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,4),(1,3),(2,3),(2,4)],5)=>0
([(0,1),(2,3),(2,4),(3,4)],5)=>0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>0
([],6)=>0
([(4,5)],6)=>0
([(3,5),(4,5)],6)=>0
([(2,5),(3,5),(4,5)],6)=>0
([(1,5),(2,5),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>0
([(2,5),(3,4)],6)=>0
([(2,5),(3,4),(4,5)],6)=>0
([(1,2),(3,5),(4,5)],6)=>0
([(3,4),(3,5),(4,5)],6)=>0
([(1,5),(2,5),(3,4),(4,5)],6)=>0
([(0,1),(2,5),(3,5),(4,5)],6)=>0
([(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,5),(2,4),(3,4)],6)=>0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(2,3)],6)=>1
([(1,5),(2,4),(3,4),(3,5)],6)=>0
([(0,1),(2,5),(3,4),(4,5)],6)=>1
([(1,2),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>0
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>2
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>3
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>2
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>6
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>2
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>3
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>3
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>3
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>4
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>7
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>9
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>6
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>6
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>7
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>8
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>8
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>10
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>12
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>15
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of perfect matchings of a graph.
A matching of a graph $G$ is a subset $F \subset E(G)$ such that no two edges in $F$ share a vertex in common. A perfect matching $F'$ is then a matching such that every vertex in $V(G)$ is incident with exactly one edge in $F'$.
A matching of a graph $G$ is a subset $F \subset E(G)$ such that no two edges in $F$ share a vertex in common. A perfect matching $F'$ is then a matching such that every vertex in $V(G)$ is incident with exactly one edge in $F'$.
References
Code
def statistic(g): return abs(g.matching_polynomial()(0))
Created
Jul 28, 2015 at 18:52 by Martin Rubey
Updated
Dec 17, 2015 at 22:58 by Matthew Donahue
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!