Values
([],1) => 0
([],2) => 0
([(0,1)],2) => 1
([],3) => 0
([(1,2)],3) => 0
([(0,2),(1,2)],3) => 0
([(0,1),(0,2),(1,2)],3) => 0
([],4) => 0
([(2,3)],4) => 0
([(1,3),(2,3)],4) => 0
([(0,3),(1,3),(2,3)],4) => 0
([(0,3),(1,2)],4) => 1
([(0,3),(1,2),(2,3)],4) => 1
([(1,2),(1,3),(2,3)],4) => 0
([(0,3),(1,2),(1,3),(2,3)],4) => 1
([(0,2),(0,3),(1,2),(1,3)],4) => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([],5) => 0
([(3,4)],5) => 0
([(2,4),(3,4)],5) => 0
([(1,4),(2,4),(3,4)],5) => 0
([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(1,4),(2,3)],5) => 0
([(1,4),(2,3),(3,4)],5) => 0
([(0,1),(2,4),(3,4)],5) => 0
([(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,4),(2,3),(3,4)],5) => 0
([(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(1,3),(1,4),(2,3),(2,4)],5) => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,3),(2,3),(2,4)],5) => 0
([(0,1),(2,3),(2,4),(3,4)],5) => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([],6) => 0
([(4,5)],6) => 0
([(3,5),(4,5)],6) => 0
([(2,5),(3,5),(4,5)],6) => 0
([(1,5),(2,5),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 0
([(2,5),(3,4)],6) => 0
([(2,5),(3,4),(4,5)],6) => 0
([(1,2),(3,5),(4,5)],6) => 0
([(3,4),(3,5),(4,5)],6) => 0
([(1,5),(2,5),(3,4),(4,5)],6) => 0
([(0,1),(2,5),(3,5),(4,5)],6) => 0
([(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,5),(2,4),(3,4)],6) => 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(2,3)],6) => 1
([(1,5),(2,4),(3,4),(3,5)],6) => 0
([(0,1),(2,5),(3,4),(4,5)],6) => 1
([(1,2),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 1
>>> Load all 208 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of perfect matchings of a graph.
A matching of a graph G is a subset F⊂E(G) such that no two edges in F share a vertex in common. A perfect matching F′ is then a matching such that every vertex in V(G) is incident with exactly one edge in F′.
A matching of a graph G is a subset F⊂E(G) such that no two edges in F share a vertex in common. A perfect matching F′ is then a matching such that every vertex in V(G) is incident with exactly one edge in F′.
References
Code
def statistic(g):
return abs(g.matching_polynomial()(0))
Created
Jul 28, 2015 at 18:52 by Martin Rubey
Updated
Dec 17, 2015 at 22:58 by Matthew Donahue
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!