edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[]=>1 [1]=>1 [2]=>1 [1,1]=>1 [3]=>1 [2,1]=>4 [1,1,1]=>1 [4]=>1 [3,1]=>7 [2,2]=>4 [2,1,1]=>11 [1,1,1,1]=>1 [5]=>1 [4,1]=>11 [3,2]=>15 [3,1,1]=>32 [2,2,1]=>34 [2,1,1,1]=>26 [1,1,1,1,1]=>1 [6]=>1 [5,1]=>16 [4,2]=>26 [4,1,1]=>76 [3,3]=>15 [3,2,1]=>192 [3,1,1,1]=>122 [2,2,2]=>34 [2,2,1,1]=>180 [2,1,1,1,1]=>57 [1,1,1,1,1,1]=>1 [7]=>1 [6,1]=>22 [5,2]=>42 [5,1,1]=>156 [4,3]=>56 [4,2,1]=>474 [4,1,1,1]=>426 [3,3,1]=>267 [3,2,2]=>294 [3,2,1,1]=>1494 [3,1,1,1,1]=>423 [2,2,2,1]=>496 [2,2,1,1,1]=>768 [2,1,1,1,1,1]=>120 [1,1,1,1,1,1,1]=>1 [8]=>1 [7,1]=>29 [6,2]=>64 [6,1,1]=>288 [5,3]=>98 [5,2,1]=>1038 [5,1,1,1]=>1206 [4,4]=>56 [4,3,1]=>1344 [4,2,2]=>768 [4,2,1,1]=>5142 [4,1,1,1,1]=>2127 [3,3,2]=>855 [3,3,1,1]=>2829 [3,2,2,1]=>5946 [3,2,1,1,1]=>9204 [3,1,1,1,1,1]=>1389 [2,2,2,2]=>496 [2,2,2,1,1]=>4288 [2,2,1,1,1,1]=>2904 [2,1,1,1,1,1,1]=>247 [1,1,1,1,1,1,1,1]=>1 [9]=>1 [8,1]=>37 [7,2]=>93 [7,1,1]=>491 [6,3]=>162 [6,2,1]=>2062 [6,1,1,1]=>2934 [5,4]=>210 [5,3,1]=>3068 [5,2,2]=>1806 [5,2,1,1]=>14988 [5,1,1,1,1]=>8157 [4,4,1]=>1736 [4,3,2]=>4590 [4,3,1,1]=>18864 [4,2,2,1]=>20838 [4,2,1,1,1]=>43422 [4,1,1,1,1,1]=>9897 [3,3,3]=>855 [3,3,2,1]=>22680 [3,3,1,1,1]=>23349 [3,2,2,2]=>7930 [3,2,2,1,1]=>70206 [3,2,1,1,1,1]=>49569 [3,1,1,1,1,1,1]=>4414 [2,2,2,2,1]=>11056 [2,2,2,1,1,1]=>28768 [2,2,1,1,1,1,1]=>10194 [2,1,1,1,1,1,1,1]=>502 [1,1,1,1,1,1,1,1,1]=>1 [10]=>1 [9,1]=>46 [8,2]=>130 [8,1,1]=>787 [7,3]=>255 [7,2,1]=>3788 [7,1,1,1]=>6371 [6,4]=>372 [6,3,1]=>6426 [6,2,2]=>3868 [6,2,1,1]=>38224 [6,1,1,1,1]=>25761 [5,5]=>210 [5,4,1]=>8220 [5,3,2]=>11270 [5,3,1,1]=>55328 [5,2,2,1]=>63456 [5,2,1,1,1]=>165978 [5,1,1,1,1,1]=>50682 [4,4,2]=>6326 [4,4,1,1]=>31016 [4,3,3]=>7155 [4,3,2,1]=>156894 [4,3,1,1,1]=>203304 [4,2,2,2]=>28768 [4,2,2,1,1]=>325500 [4,2,1,1,1,1]=>316164 [4,1,1,1,1,1,1]=>44002 [3,3,3,1]=>28665 [3,3,2,2]=>46470 [3,3,2,1,1]=>346539 [3,3,1,1,1,1]=>166314 [3,2,2,2,1]=>232216 [3,2,2,1,1,1]=>635610 [3,2,1,1,1,1,1]=>245148 [3,1,1,1,1,1,1,1]=>13744 [2,2,2,2,2]=>11056 [2,2,2,2,1,1]=>141584 [2,2,2,1,1,1,1]=>166042 [2,2,1,1,1,1,1,1]=>34096 [2,1,1,1,1,1,1,1,1]=>1013 [1,1,1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Number of permutations whose sorted list of non zero multiplicities of the Lehmer code is the given partition.
References
[1] Hivert, F., Novelli, J.-C., Thibon, J.-Y. Multivariate generalizations of the Foata-Schützenberger equidistribution MathSciNet:2509639 arXiv:math/0605060
Code
import collections
def part_of_perm(p):
    c = p.to_lehmer_code()
    return Partition(sorted([c.count(i) for i in range(len(p)) if i in c])[::-1])

@cached_function
def stat(N):
    res = collections.defaultdict(int)
    for p in Permutations(N):
        res[part_of_perm(p)] += 1
    return dict(res)

def statistic(L):
    return stat(L.size())[L]
Created
Sep 04, 2015 at 17:58 by Florent Hivert
Updated
Sep 15, 2015 at 15:49 by Christian Stump