Identifier
- St000275: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>1
[2]=>1
[1,1]=>1
[3]=>1
[2,1]=>4
[1,1,1]=>1
[4]=>1
[3,1]=>7
[2,2]=>4
[2,1,1]=>11
[1,1,1,1]=>1
[5]=>1
[4,1]=>11
[3,2]=>15
[3,1,1]=>32
[2,2,1]=>34
[2,1,1,1]=>26
[1,1,1,1,1]=>1
[6]=>1
[5,1]=>16
[4,2]=>26
[4,1,1]=>76
[3,3]=>15
[3,2,1]=>192
[3,1,1,1]=>122
[2,2,2]=>34
[2,2,1,1]=>180
[2,1,1,1,1]=>57
[1,1,1,1,1,1]=>1
[7]=>1
[6,1]=>22
[5,2]=>42
[5,1,1]=>156
[4,3]=>56
[4,2,1]=>474
[4,1,1,1]=>426
[3,3,1]=>267
[3,2,2]=>294
[3,2,1,1]=>1494
[3,1,1,1,1]=>423
[2,2,2,1]=>496
[2,2,1,1,1]=>768
[2,1,1,1,1,1]=>120
[1,1,1,1,1,1,1]=>1
[8]=>1
[7,1]=>29
[6,2]=>64
[6,1,1]=>288
[5,3]=>98
[5,2,1]=>1038
[5,1,1,1]=>1206
[4,4]=>56
[4,3,1]=>1344
[4,2,2]=>768
[4,2,1,1]=>5142
[4,1,1,1,1]=>2127
[3,3,2]=>855
[3,3,1,1]=>2829
[3,2,2,1]=>5946
[3,2,1,1,1]=>9204
[3,1,1,1,1,1]=>1389
[2,2,2,2]=>496
[2,2,2,1,1]=>4288
[2,2,1,1,1,1]=>2904
[2,1,1,1,1,1,1]=>247
[1,1,1,1,1,1,1,1]=>1
[9]=>1
[8,1]=>37
[7,2]=>93
[7,1,1]=>491
[6,3]=>162
[6,2,1]=>2062
[6,1,1,1]=>2934
[5,4]=>210
[5,3,1]=>3068
[5,2,2]=>1806
[5,2,1,1]=>14988
[5,1,1,1,1]=>8157
[4,4,1]=>1736
[4,3,2]=>4590
[4,3,1,1]=>18864
[4,2,2,1]=>20838
[4,2,1,1,1]=>43422
[4,1,1,1,1,1]=>9897
[3,3,3]=>855
[3,3,2,1]=>22680
[3,3,1,1,1]=>23349
[3,2,2,2]=>7930
[3,2,2,1,1]=>70206
[3,2,1,1,1,1]=>49569
[3,1,1,1,1,1,1]=>4414
[2,2,2,2,1]=>11056
[2,2,2,1,1,1]=>28768
[2,2,1,1,1,1,1]=>10194
[2,1,1,1,1,1,1,1]=>502
[1,1,1,1,1,1,1,1,1]=>1
[10]=>1
[9,1]=>46
[8,2]=>130
[8,1,1]=>787
[7,3]=>255
[7,2,1]=>3788
[7,1,1,1]=>6371
[6,4]=>372
[6,3,1]=>6426
[6,2,2]=>3868
[6,2,1,1]=>38224
[6,1,1,1,1]=>25761
[5,5]=>210
[5,4,1]=>8220
[5,3,2]=>11270
[5,3,1,1]=>55328
[5,2,2,1]=>63456
[5,2,1,1,1]=>165978
[5,1,1,1,1,1]=>50682
[4,4,2]=>6326
[4,4,1,1]=>31016
[4,3,3]=>7155
[4,3,2,1]=>156894
[4,3,1,1,1]=>203304
[4,2,2,2]=>28768
[4,2,2,1,1]=>325500
[4,2,1,1,1,1]=>316164
[4,1,1,1,1,1,1]=>44002
[3,3,3,1]=>28665
[3,3,2,2]=>46470
[3,3,2,1,1]=>346539
[3,3,1,1,1,1]=>166314
[3,2,2,2,1]=>232216
[3,2,2,1,1,1]=>635610
[3,2,1,1,1,1,1]=>245148
[3,1,1,1,1,1,1,1]=>13744
[2,2,2,2,2]=>11056
[2,2,2,2,1,1]=>141584
[2,2,2,1,1,1,1]=>166042
[2,2,1,1,1,1,1,1]=>34096
[2,1,1,1,1,1,1,1,1]=>1013
[1,1,1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Number of permutations whose sorted list of non zero multiplicities of the Lehmer code is the given partition.
References
[1] Hivert, F., Novelli, J.-C., Thibon, J.-Y. Multivariate generalizations of the Foata-Schützenberger equidistribution MathSciNet:2509639 arXiv:math/0605060
Code
import collections def part_of_perm(p): c = p.to_lehmer_code() return Partition(sorted([c.count(i) for i in range(len(p)) if i in c])[::-1]) @cached_function def stat(N): res = collections.defaultdict(int) for p in Permutations(N): res[part_of_perm(p)] += 1 return dict(res) def statistic(L): return stat(L.size())[L]
Created
Sep 04, 2015 at 17:58 by Florent Hivert
Updated
Sep 15, 2015 at 15:49 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!