Identifier
Values
['A',1] => ([],1) => [1] => 1
['A',2] => ([(0,2),(1,2)],3) => [2,1] => 4
['B',2] => ([(0,3),(1,3),(3,2)],4) => [3,1] => 7
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [5,1] => 16
['A',3] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => [3,2,1] => 192
['B',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => [5,3,1] => 3068
['C',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => [5,3,1] => 3068
['A',4] => ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10) => [4,3,2,1] => 156894
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Number of permutations whose sorted list of non zero multiplicities of the Lehmer code is the given partition.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition $(c_1 - c_0, c_2 - c_1, c_3 - c_2, \ldots)$, where $c_k$ is the maximum cardinality of a union of $k$ chains of the poset. Equivalently, this is the conjugate of the partition $(a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots)$, where $a_k$ is the maximum cardinality of a union of $k$ antichains of the poset.