Identifier
-
Mp00047:
Ordered trees
—to poset⟶
Posets
St000282: Posets ⟶ ℤ
Values
[[]] => ([(0,1)],2) => 1
[[],[]] => ([(0,2),(1,2)],3) => 1
[[[]]] => ([(0,2),(2,1)],3) => 1
[[],[],[]] => ([(0,3),(1,3),(2,3)],4) => 1
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => 2
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => 2
[[[],[]]] => ([(0,3),(1,3),(3,2)],4) => 1
[[[[]]]] => ([(0,3),(2,1),(3,2)],4) => 1
[[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
[[],[[],[]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => 2
[[],[[[]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 2
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
[[[]],[[]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 1
[[[],[]],[]] => ([(0,4),(1,3),(2,3),(3,4)],5) => 2
[[[[]]],[]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 2
[[[],[],[]]] => ([(0,4),(1,4),(2,4),(4,3)],5) => 1
[[[],[[]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[[[[]],[]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => 1
[[[[[]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[[],[],[],[],[]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 4
[[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 4
[[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 4
[[],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 3
[[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[],[[],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => 2
[[],[[],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => 4
[[],[[[]],[]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => 4
[[],[[[],[]]]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => 2
[[],[[[[]]]]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => 2
[[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 4
[[[]],[],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 3
[[[]],[[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 3
[[[]],[[],[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => 2
[[[]],[[[]]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 2
[[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[[],[]],[[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => 2
[[[[]]],[[]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 2
[[[],[],[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => 2
[[[],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => 4
[[[[]],[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => 4
[[[[],[]]],[]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => 2
[[[[[]]]],[]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => 2
[[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => 1
[[[],[],[[]]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => 3
[[[],[[]],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => 3
[[[],[[],[]]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 2
[[[],[[[]]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 2
[[[[]],[],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => 3
[[[[]],[[]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 1
[[[[],[]],[]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 2
[[[[[]]],[]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 2
[[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => 1
[[[[],[[]]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 2
[[[[[]],[]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 2
[[[[[],[]]]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => 1
[[[[[[]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[[],[],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 1
[[],[],[],[],[[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 5
[[],[],[],[[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 5
[[],[],[],[[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 4
[[],[],[],[[[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 4
[[],[],[[]],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 5
[[],[],[[]],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 6
[[],[],[[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 4
[[],[],[[[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 4
[[],[],[[],[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7) => 3
[[],[],[[],[[]]]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => 6
[[],[],[[[]],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => 6
[[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7) => 3
[[],[],[[[[]]]]] => ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7) => 3
[[],[[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 5
[[],[[]],[],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 6
[[],[[]],[[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 6
[[],[[]],[[],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 6
[[],[[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 4
[[],[[[]]],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 4
[[],[[],[]],[[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 6
[[],[[],[],[]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7) => 3
[[],[[],[[]]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => 6
[[],[[[]],[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => 6
[[],[[[],[]]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7) => 3
[[],[[[[]]]],[]] => ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7) => 3
[[],[[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => 2
[[],[[],[],[[]]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7) => 6
[[],[[],[[]],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7) => 6
[[],[[],[[],[]]]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => 4
[[],[[[]],[],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7) => 6
[[],[[[],[]],[]]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => 4
[[],[[[],[],[]]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(6,4)],7) => 2
[[],[[[],[[]]]]] => ([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7) => 4
[[],[[[[]],[]]]] => ([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7) => 4
[[],[[[[],[]]]]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(6,3)],7) => 2
[[[]],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 5
>>> Load all 159 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The size of the preimage of the map 'to poset' from Ordered trees to Posets.
Map
to poset
Description
Return the poset obtained by interpreting the tree as the Hasse diagram of a graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!