Identifier
- St000284: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[2]=>1
[1,1]=>1
[3]=>1
[2,1]=>4
[1,1,1]=>1
[4]=>1
[3,1]=>9
[2,2]=>4
[2,1,1]=>9
[1,1,1,1]=>1
[5]=>1
[4,1]=>16
[3,2]=>25
[3,1,1]=>36
[2,2,1]=>25
[2,1,1,1]=>16
[1,1,1,1,1]=>1
[6]=>1
[5,1]=>25
[4,2]=>81
[4,1,1]=>100
[3,3]=>25
[3,2,1]=>256
[3,1,1,1]=>100
[2,2,2]=>25
[2,2,1,1]=>81
[2,1,1,1,1]=>25
[1,1,1,1,1,1]=>1
[7]=>1
[6,1]=>36
[5,2]=>196
[5,1,1]=>225
[4,3]=>196
[4,2,1]=>1225
[4,1,1,1]=>400
[3,3,1]=>441
[3,2,2]=>441
[3,2,1,1]=>1225
[3,1,1,1,1]=>225
[2,2,2,1]=>196
[2,2,1,1,1]=>196
[2,1,1,1,1,1]=>36
[1,1,1,1,1,1,1]=>1
[8]=>1
[7,1]=>49
[6,2]=>400
[6,1,1]=>441
[5,3]=>784
[5,2,1]=>4096
[5,1,1,1]=>1225
[4,4]=>196
[4,3,1]=>4900
[4,2,2]=>3136
[4,2,1,1]=>8100
[4,1,1,1,1]=>1225
[3,3,2]=>1764
[3,3,1,1]=>3136
[3,2,2,1]=>4900
[3,2,1,1,1]=>4096
[3,1,1,1,1,1]=>441
[2,2,2,2]=>196
[2,2,2,1,1]=>784
[2,2,1,1,1,1]=>400
[2,1,1,1,1,1,1]=>49
[1,1,1,1,1,1,1,1]=>1
[9]=>1
[8,1]=>64
[7,2]=>729
[7,1,1]=>784
[6,3]=>2304
[6,2,1]=>11025
[6,1,1,1]=>3136
[5,4]=>1764
[5,3,1]=>26244
[5,2,2]=>14400
[5,2,1,1]=>35721
[5,1,1,1,1]=>4900
[4,4,1]=>7056
[4,3,2]=>28224
[4,3,1,1]=>46656
[4,2,2,1]=>46656
[4,2,1,1,1]=>35721
[4,1,1,1,1,1]=>3136
[3,3,3]=>1764
[3,3,2,1]=>28224
[3,3,1,1,1]=>14400
[3,2,2,2]=>7056
[3,2,2,1,1]=>26244
[3,2,1,1,1,1]=>11025
[3,1,1,1,1,1,1]=>784
[2,2,2,2,1]=>1764
[2,2,2,1,1,1]=>2304
[2,2,1,1,1,1,1]=>729
[2,1,1,1,1,1,1,1]=>64
[1,1,1,1,1,1,1,1,1]=>1
[10]=>1
[9,1]=>81
[8,2]=>1225
[8,1,1]=>1296
[7,3]=>5625
[7,2,1]=>25600
[7,1,1,1]=>7056
[6,4]=>8100
[6,3,1]=>99225
[6,2,2]=>50625
[6,2,1,1]=>122500
[6,1,1,1,1]=>15876
[5,5]=>1764
[5,4,1]=>82944
[5,3,2]=>202500
[5,3,1,1]=>321489
[5,2,2,1]=>275625
[5,2,1,1,1]=>200704
[5,1,1,1,1,1]=>15876
[4,4,2]=>63504
[4,4,1,1]=>90000
[4,3,3]=>44100
[4,3,2,1]=>589824
[4,3,1,1,1]=>275625
[4,2,2,2]=>90000
[4,2,2,1,1]=>321489
[4,2,1,1,1,1]=>122500
[4,1,1,1,1,1,1]=>7056
[3,3,3,1]=>44100
[3,3,2,2]=>63504
[3,3,2,1,1]=>202500
[3,3,1,1,1,1]=>50625
[3,2,2,2,1]=>82944
[3,2,2,1,1,1]=>99225
[3,2,1,1,1,1,1]=>25600
[3,1,1,1,1,1,1,1]=>1296
[2,2,2,2,2]=>1764
[2,2,2,2,1,1]=>8100
[2,2,2,1,1,1,1]=>5625
[2,2,1,1,1,1,1,1]=>1225
[2,1,1,1,1,1,1,1,1]=>81
[1,1,1,1,1,1,1,1,1,1]=>1
[11]=>1
[10,1]=>100
[9,2]=>1936
[9,1,1]=>2025
[8,3]=>12100
[8,2,1]=>53361
[8,1,1,1]=>14400
[7,4]=>27225
[7,3,1]=>302500
[7,2,2]=>148225
[7,2,1,1]=>352836
[7,1,1,1,1]=>44100
[6,5]=>17424
[6,4,1]=>480249
[6,3,2]=>980100
[6,3,1,1]=>1517824
[6,2,2,1]=>1210000
[6,2,1,1,1]=>853776
[6,1,1,1,1,1]=>63504
[5,5,1]=>108900
[5,4,2]=>980100
[5,4,1,1]=>1334025
[5,3,3]=>435600
[5,3,2,1]=>5336100
[5,3,1,1,1]=>2371600
[5,2,2,2]=>680625
[5,2,2,1,1]=>2371600
[5,2,1,1,1,1]=>853776
[5,1,1,1,1,1,1]=>44100
[4,4,3]=>213444
[4,4,2,1]=>1742400
[4,4,1,1,1]=>680625
[4,3,3,1]=>1411344
[4,3,2,2]=>1742400
[4,3,2,1,1]=>5336100
[4,3,1,1,1,1]=>1210000
[4,2,2,2,1]=>1334025
[4,2,2,1,1,1]=>1517824
[4,2,1,1,1,1,1]=>352836
[4,1,1,1,1,1,1,1]=>14400
[3,3,3,2]=>213444
[3,3,3,1,1]=>435600
[3,3,2,2,1]=>980100
[3,3,2,1,1,1]=>980100
[3,3,1,1,1,1,1]=>148225
[3,2,2,2,2]=>108900
[3,2,2,2,1,1]=>480249
[3,2,2,1,1,1,1]=>302500
[3,2,1,1,1,1,1,1]=>53361
[3,1,1,1,1,1,1,1,1]=>2025
[2,2,2,2,2,1]=>17424
[2,2,2,2,1,1,1]=>27225
[2,2,2,1,1,1,1,1]=>12100
[2,2,1,1,1,1,1,1,1]=>1936
[2,1,1,1,1,1,1,1,1,1]=>100
[1,1,1,1,1,1,1,1,1,1,1]=>1
[12]=>1
[11,1]=>121
[10,2]=>2916
[10,1,1]=>3025
[9,3]=>23716
[9,2,1]=>102400
[9,1,1,1]=>27225
[8,4]=>75625
[8,3,1]=>793881
[8,2,2]=>379456
[8,2,1,1]=>893025
[8,1,1,1,1]=>108900
[7,5]=>88209
[7,4,1]=>1982464
[7,3,2]=>3705625
[7,3,1,1]=>5645376
[7,2,2,1]=>4322241
[7,2,1,1,1]=>2985984
[7,1,1,1,1,1]=>213444
[6,6]=>17424
[6,5,1]=>1334025
[6,4,2]=>7144929
[6,4,1,1]=>9486400
[6,3,3]=>2722500
[6,3,2,1]=>31719424
[6,3,1,1,1]=>13660416
[6,2,2,2]=>3705625
[6,2,2,1,1]=>12702096
[6,2,1,1,1,1]=>4410000
[6,1,1,1,1,1,1]=>213444
[5,5,2]=>1742400
[5,5,1,1]=>2205225
[5,4,3]=>4460544
[5,4,2,1]=>33350625
[5,4,1,1,1]=>12390400
[5,3,3,1]=>17288964
[5,3,2,2]=>19847025
[5,3,2,1,1]=>59290000
[5,3,1,1,1,1]=>12702096
[5,2,2,2,1]=>12390400
[5,2,2,1,1,1]=>13660416
[5,2,1,1,1,1,1]=>2985984
[5,1,1,1,1,1,1,1]=>108900
[4,4,4]=>213444
[4,4,3,1]=>8820900
[4,4,2,2]=>6969600
[4,4,2,1,1]=>19847025
[4,4,1,1,1,1]=>3705625
[4,3,3,2]=>8820900
[4,3,3,1,1]=>17288964
[4,3,2,2,1]=>33350625
[4,3,2,1,1,1]=>31719424
[4,3,1,1,1,1,1]=>4322241
[4,2,2,2,2]=>2205225
[4,2,2,2,1,1]=>9486400
[4,2,2,1,1,1,1]=>5645376
[4,2,1,1,1,1,1,1]=>893025
[4,1,1,1,1,1,1,1,1]=>27225
[3,3,3,3]=>213444
[3,3,3,2,1]=>4460544
[3,3,3,1,1,1]=>2722500
[3,3,2,2,2]=>1742400
[3,3,2,2,1,1]=>7144929
[3,3,2,1,1,1,1]=>3705625
[3,3,1,1,1,1,1,1]=>379456
[3,2,2,2,2,1]=>1334025
[3,2,2,2,1,1,1]=>1982464
[3,2,2,1,1,1,1,1]=>793881
[3,2,1,1,1,1,1,1,1]=>102400
[3,1,1,1,1,1,1,1,1,1]=>3025
[2,2,2,2,2,2]=>17424
[2,2,2,2,2,1,1]=>88209
[2,2,2,2,1,1,1,1]=>75625
[2,2,2,1,1,1,1,1,1]=>23716
[2,2,1,1,1,1,1,1,1,1]=>2916
[2,1,1,1,1,1,1,1,1,1,1]=>121
[1,1,1,1,1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The Plancherel distribution on integer partitions.
This is defined as the distribution induced by the RSK shape of the uniform distribution on permutations. In other words, this is the size of the preimage of the map 'Robinson-Schensted tableau shape' from permutations to integer partitions.
Equivalently, this is given by the square of the number of standard Young tableaux of the given shape.
This is defined as the distribution induced by the RSK shape of the uniform distribution on permutations. In other words, this is the size of the preimage of the map 'Robinson-Schensted tableau shape' from permutations to integer partitions.
Equivalently, this is given by the square of the number of standard Young tableaux of the given shape.
References
Code
def statistic(L): return L.standard_tableaux().cardinality()^2
Created
Sep 15, 2015 at 08:40 by Martin Rubey
Updated
Jul 12, 2017 at 10:03 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!