Values
=>
Cc0020;cc-rep
([],1)=>1
([],2)=>1
([(0,1)],2)=>2
([],3)=>1
([(1,2)],3)=>1
([(0,2),(1,2)],3)=>2
([(0,1),(0,2),(1,2)],3)=>3
([],4)=>1
([(2,3)],4)=>1
([(1,3),(2,3)],4)=>1
([(0,3),(1,3),(2,3)],4)=>2
([(0,3),(1,2)],4)=>1
([(0,3),(1,2),(2,3)],4)=>1
([(1,2),(1,3),(2,3)],4)=>1
([(0,3),(1,2),(1,3),(2,3)],4)=>2
([(0,2),(0,3),(1,2),(1,3)],4)=>2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>4
([],5)=>1
([(3,4)],5)=>1
([(2,4),(3,4)],5)=>1
([(1,4),(2,4),(3,4)],5)=>1
([(0,4),(1,4),(2,4),(3,4)],5)=>2
([(1,4),(2,3)],5)=>1
([(1,4),(2,3),(3,4)],5)=>1
([(0,1),(2,4),(3,4)],5)=>1
([(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,4),(2,3),(3,4)],5)=>1
([(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>2
([(1,3),(1,4),(2,3),(2,4)],5)=>1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,4),(1,3),(2,3),(2,4)],5)=>1
([(0,1),(2,3),(2,4),(3,4)],5)=>1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>5
([],6)=>1
([(4,5)],6)=>1
([(3,5),(4,5)],6)=>1
([(2,5),(3,5),(4,5)],6)=>1
([(1,5),(2,5),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>2
([(2,5),(3,4)],6)=>1
([(2,5),(3,4),(4,5)],6)=>1
([(1,2),(3,5),(4,5)],6)=>1
([(3,4),(3,5),(4,5)],6)=>1
([(1,5),(2,5),(3,4),(4,5)],6)=>1
([(0,1),(2,5),(3,5),(4,5)],6)=>1
([(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,5),(1,5),(2,4),(3,4)],6)=>1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,4),(2,3)],6)=>1
([(1,5),(2,4),(3,4),(3,5)],6)=>1
([(0,1),(2,5),(3,4),(4,5)],6)=>1
([(1,2),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>1
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>1
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of connected components of the complement of a graph.
The complement of a graph is the graph on the same vertex set with complementary edges.
The complement of a graph is the graph on the same vertex set with complementary edges.
References
[1] Triangle read by rows: T(n,m) = number of unlabeled graphs on n nodes with m connected components, m = 1,2,...,n. OEIS:A201922
Code
def statistic(G): return len(G.complement().connected_components())
Created
Oct 30, 2015 at 17:23 by Alexander Engström
Updated
Oct 30, 2015 at 17:28 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!