edit this statistic or download as text // json
Identifier
Values
=>
Cc0020;cc-rep
([],1)=>1 ([],2)=>1 ([(0,1)],2)=>2 ([],3)=>1 ([(1,2)],3)=>1 ([(0,2),(1,2)],3)=>2 ([(0,1),(0,2),(1,2)],3)=>3 ([],4)=>1 ([(2,3)],4)=>1 ([(1,3),(2,3)],4)=>1 ([(0,3),(1,3),(2,3)],4)=>2 ([(0,3),(1,2)],4)=>1 ([(0,3),(1,2),(2,3)],4)=>1 ([(1,2),(1,3),(2,3)],4)=>1 ([(0,3),(1,2),(1,3),(2,3)],4)=>2 ([(0,2),(0,3),(1,2),(1,3)],4)=>2 ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>3 ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>4 ([],5)=>1 ([(3,4)],5)=>1 ([(2,4),(3,4)],5)=>1 ([(1,4),(2,4),(3,4)],5)=>1 ([(0,4),(1,4),(2,4),(3,4)],5)=>2 ([(1,4),(2,3)],5)=>1 ([(1,4),(2,3),(3,4)],5)=>1 ([(0,1),(2,4),(3,4)],5)=>1 ([(2,3),(2,4),(3,4)],5)=>1 ([(0,4),(1,4),(2,3),(3,4)],5)=>1 ([(1,4),(2,3),(2,4),(3,4)],5)=>1 ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>2 ([(1,3),(1,4),(2,3),(2,4)],5)=>1 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>1 ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1 ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>1 ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>2 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([(0,4),(1,3),(2,3),(2,4)],5)=>1 ([(0,1),(2,3),(2,4),(3,4)],5)=>1 ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>1 ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>2 ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>1 ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>1 ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>2 ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>1 ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1 ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>2 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>3 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4 ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>5 ([],6)=>1 ([(4,5)],6)=>1 ([(3,5),(4,5)],6)=>1 ([(2,5),(3,5),(4,5)],6)=>1 ([(1,5),(2,5),(3,5),(4,5)],6)=>1 ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>2 ([(2,5),(3,4)],6)=>1 ([(2,5),(3,4),(4,5)],6)=>1 ([(1,2),(3,5),(4,5)],6)=>1 ([(3,4),(3,5),(4,5)],6)=>1 ([(1,5),(2,5),(3,4),(4,5)],6)=>1 ([(0,1),(2,5),(3,5),(4,5)],6)=>1 ([(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>1 ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(2,4),(2,5),(3,4),(3,5)],6)=>1 ([(0,5),(1,5),(2,4),(3,4)],6)=>1 ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>1 ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>1 ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>1 ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>1 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>1 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>1 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,4),(2,3)],6)=>1 ([(1,5),(2,4),(3,4),(3,5)],6)=>1 ([(0,1),(2,5),(3,4),(4,5)],6)=>1 ([(1,2),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>1 ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>1 ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1 ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>2 ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>1 ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>1 ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>1 ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>1 ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>1 ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>1 ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>1 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>1 ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>1 ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>1 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>1 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>1 ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>1 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>1 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>1 ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>1 ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>1 ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1 ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>1 ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>1 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>1 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>1 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>1 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>2 ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>3 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>1 ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>1 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>1 ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>1 ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>1 ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>1 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1 ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>2 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>1 ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>3 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>3 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of connected components of the complement of a graph.
The complement of a graph is the graph on the same vertex set with complementary edges.
References
[1] Triangle read by rows: T(n,m) = number of unlabeled graphs on n nodes with m connected components, m = 1,2,...,n. OEIS:A201922
Code
def statistic(G):
    return len(G.complement().connected_components())
Created
Oct 30, 2015 at 17:23 by Alexander Engström
Updated
Oct 30, 2015 at 17:28 by Christian Stump