Identifier
-
Mp00095:
Integer partitions
—to binary word⟶
Binary words
Mp00105: Binary words —complement⟶ Binary words
Mp00280: Binary words —path rowmotion⟶ Binary words
St000288: Binary words ⟶ ℤ
Values
[1] => 10 => 01 => 10 => 1
[2] => 100 => 011 => 100 => 1
[1,1] => 110 => 001 => 010 => 1
[3] => 1000 => 0111 => 1000 => 1
[2,1] => 1010 => 0101 => 1010 => 2
[1,1,1] => 1110 => 0001 => 0010 => 1
[4] => 10000 => 01111 => 10000 => 1
[3,1] => 10010 => 01101 => 10110 => 3
[2,2] => 1100 => 0011 => 0100 => 1
[2,1,1] => 10110 => 01001 => 10010 => 2
[1,1,1,1] => 11110 => 00001 => 00010 => 1
[5] => 100000 => 011111 => 100000 => 1
[4,1] => 100010 => 011101 => 101110 => 4
[3,2] => 10100 => 01011 => 10100 => 2
[3,1,1] => 100110 => 011001 => 100110 => 3
[2,2,1] => 11010 => 00101 => 01010 => 2
[2,1,1,1] => 101110 => 010001 => 100010 => 2
[1,1,1,1,1] => 111110 => 000001 => 000010 => 1
[6] => 1000000 => 0111111 => 1000000 => 1
[5,1] => 1000010 => 0111101 => 1011110 => 5
[4,2] => 100100 => 011011 => 101100 => 3
[4,1,1] => 1000110 => 0111001 => 1001110 => 4
[3,3] => 11000 => 00111 => 01000 => 1
[3,2,1] => 101010 => 010101 => 101010 => 3
[3,1,1,1] => 1001110 => 0110001 => 1000110 => 3
[2,2,2] => 11100 => 00011 => 00100 => 1
[2,2,1,1] => 110110 => 001001 => 010010 => 2
[2,1,1,1,1] => 1011110 => 0100001 => 1000010 => 2
[1,1,1,1,1,1] => 1111110 => 0000001 => 0000010 => 1
[7] => 10000000 => 01111111 => 10000000 => 1
[6,1] => 10000010 => 01111101 => 10111110 => 6
[5,2] => 1000100 => 0111011 => 1011100 => 4
[5,1,1] => 10000110 => 01111001 => 10011110 => 5
[4,3] => 101000 => 010111 => 101000 => 2
[4,2,1] => 1001010 => 0110101 => 1011010 => 4
[4,1,1,1] => 10001110 => 01110001 => 10001110 => 4
[3,3,1] => 110010 => 001101 => 010110 => 3
[3,2,2] => 101100 => 010011 => 100100 => 2
[3,2,1,1] => 1010110 => 0101001 => 1010010 => 3
[3,1,1,1,1] => 10011110 => 01100001 => 10000110 => 3
[2,2,2,1] => 111010 => 000101 => 001010 => 2
[2,2,1,1,1] => 1101110 => 0010001 => 0100010 => 2
[2,1,1,1,1,1] => 10111110 => 01000001 => 10000010 => 2
[1,1,1,1,1,1,1] => 11111110 => 00000001 => 00000010 => 1
[8] => 100000000 => 011111111 => 100000000 => 1
[7,1] => 100000010 => 011111101 => 101111110 => 7
[6,2] => 10000100 => 01111011 => 10111100 => 5
[6,1,1] => 100000110 => 011111001 => 100111110 => 6
[5,3] => 1001000 => 0110111 => 1011000 => 3
[5,2,1] => 10001010 => 01110101 => 10111010 => 5
[5,1,1,1] => 100001110 => 011110001 => 100011110 => 5
[4,4] => 110000 => 001111 => 010000 => 1
[4,3,1] => 1010010 => 0101101 => 1010110 => 4
[4,2,2] => 1001100 => 0110011 => 1001100 => 3
[4,2,1,1] => 10010110 => 01101001 => 10110010 => 4
[4,1,1,1,1] => 100011110 => 011100001 => 100001110 => 4
[3,3,2] => 110100 => 001011 => 010100 => 2
[3,3,1,1] => 1100110 => 0011001 => 0100110 => 3
[3,2,2,1] => 1011010 => 0100101 => 1001010 => 3
[3,2,1,1,1] => 10101110 => 01010001 => 10100010 => 3
[3,1,1,1,1,1] => 100111110 => 011000001 => 100000110 => 3
[2,2,2,2] => 111100 => 000011 => 000100 => 1
[2,2,2,1,1] => 1110110 => 0001001 => 0010010 => 2
[2,2,1,1,1,1] => 11011110 => 00100001 => 01000010 => 2
[2,1,1,1,1,1,1] => 101111110 => 010000001 => 100000010 => 2
[1,1,1,1,1,1,1,1] => 111111110 => 000000001 => 000000010 => 1
[9] => 1000000000 => 0111111111 => 1000000000 => 1
[8,1] => 1000000010 => 0111111101 => 1011111110 => 8
[7,1,1] => 1000000110 => 0111111001 => 1001111110 => 7
[6,3] => 10001000 => 01110111 => 10111000 => 4
[6,1,1,1] => 1000001110 => 0111110001 => 1000111110 => 6
[5,4] => 1010000 => 0101111 => 1010000 => 2
[5,3,1] => 10010010 => 01101101 => 10110110 => 5
[5,2,2] => 10001100 => 01110011 => 10011100 => 4
[5,1,1,1,1] => 1000011110 => 0111100001 => 1000011110 => 5
[4,4,1] => 1100010 => 0011101 => 0101110 => 4
[4,3,2] => 1010100 => 0101011 => 1010100 => 3
[4,3,1,1] => 10100110 => 01011001 => 10100110 => 4
[4,2,2,1] => 10011010 => 01100101 => 10011010 => 4
[4,1,1,1,1,1] => 1000111110 => 0111000001 => 1000001110 => 4
[3,3,3] => 111000 => 000111 => 001000 => 1
[3,3,2,1] => 1101010 => 0010101 => 0101010 => 3
[3,3,1,1,1] => 11001110 => 00110001 => 01000110 => 3
[3,2,2,2] => 1011100 => 0100011 => 1000100 => 2
[3,2,2,1,1] => 10110110 => 01001001 => 10010010 => 3
[3,1,1,1,1,1,1] => 1001111110 => 0110000001 => 1000000110 => 3
[2,2,2,2,1] => 1111010 => 0000101 => 0001010 => 2
[2,2,2,1,1,1] => 11101110 => 00010001 => 00100010 => 2
[2,2,1,1,1,1,1] => 110111110 => 001000001 => 010000010 => 2
[2,1,1,1,1,1,1,1] => 1011111110 => 0100000001 => 1000000010 => 2
[1,1,1,1,1,1,1,1,1] => 1111111110 => 0000000001 => 0000000010 => 1
[10] => 10000000000 => 01111111111 => 10000000000 => 1
[9,1] => 10000000010 => 01111111101 => 10111111110 => 9
[8,1,1] => 10000000110 => 01111111001 => 10011111110 => 8
[7,1,1,1] => 10000001110 => 01111110001 => 10001111110 => 7
[6,4] => 10010000 => 01101111 => 10110000 => 3
[6,1,1,1,1] => 10000011110 => 01111100001 => 10000111110 => 6
[5,5] => 1100000 => 0011111 => 0100000 => 1
[5,4,1] => 10100010 => 01011101 => 10101110 => 5
[5,3,2] => 10010100 => 01101011 => 10110100 => 4
[5,3,1,1] => 100100110 => 011011001 => 101100110 => 5
>>> Load all 271 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of ones in a binary word.
This is also known as the Hamming weight of the word.
This is also known as the Hamming weight of the word.
Map
path rowmotion
Description
Return the rowmotion of the binary word, regarded as a lattice path.
Consider the binary word of length $n$ as a lattice path with $n$ steps, where a 1 corresponds to an up step and a 0 corresponds to a down step.
This map returns the path whose peaks are the valleys of the original path with an up step appended.
Consider the binary word of length $n$ as a lattice path with $n$ steps, where a 1 corresponds to an up step and a 0 corresponds to a down step.
This map returns the path whose peaks are the valleys of the original path with an up step appended.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
Map
complement
Description
Send a binary word to the word obtained by interchanging the two letters.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!