Identifier
-
Mp00021:
Cores
—to bounded partition⟶
Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00316: Binary words —inverse Foata bijection⟶ Binary words
St000290: Binary words ⟶ ℤ
Values
([2],3) => [2] => 100 => 010 => 2
([1,1],3) => [1,1] => 110 => 110 => 2
([3,1],3) => [2,1] => 1010 => 0110 => 3
([2,1,1],3) => [1,1,1] => 1110 => 1110 => 3
([4,2],3) => [2,2] => 1100 => 1010 => 4
([3,1,1],3) => [2,1,1] => 10110 => 01110 => 4
([2,2,1,1],3) => [1,1,1,1] => 11110 => 11110 => 4
([5,3,1],3) => [2,2,1] => 11010 => 10110 => 5
([4,2,1,1],3) => [2,1,1,1] => 101110 => 011110 => 5
([3,2,2,1,1],3) => [1,1,1,1,1] => 111110 => 111110 => 5
([6,4,2],3) => [2,2,2] => 11100 => 11010 => 6
([5,3,1,1],3) => [2,2,1,1] => 110110 => 101110 => 6
([4,2,2,1,1],3) => [2,1,1,1,1] => 1011110 => 0111110 => 6
([3,3,2,2,1,1],3) => [1,1,1,1,1,1] => 1111110 => 1111110 => 6
([2],4) => [2] => 100 => 010 => 2
([1,1],4) => [1,1] => 110 => 110 => 2
([3],4) => [3] => 1000 => 0010 => 3
([2,1],4) => [2,1] => 1010 => 0110 => 3
([1,1,1],4) => [1,1,1] => 1110 => 1110 => 3
([4,1],4) => [3,1] => 10010 => 00110 => 4
([2,2],4) => [2,2] => 1100 => 1010 => 4
([3,1,1],4) => [2,1,1] => 10110 => 01110 => 4
([2,1,1,1],4) => [1,1,1,1] => 11110 => 11110 => 4
([5,2],4) => [3,2] => 10100 => 10010 => 5
([4,1,1],4) => [3,1,1] => 100110 => 001110 => 5
([3,2,1],4) => [2,2,1] => 11010 => 10110 => 5
([3,1,1,1],4) => [2,1,1,1] => 101110 => 011110 => 5
([2,2,1,1,1],4) => [1,1,1,1,1] => 111110 => 111110 => 5
([6,3],4) => [3,3] => 11000 => 01010 => 6
([5,2,1],4) => [3,2,1] => 101010 => 100110 => 6
([4,1,1,1],4) => [3,1,1,1] => 1001110 => 0011110 => 6
([4,2,2],4) => [2,2,2] => 11100 => 11010 => 6
([3,3,1,1],4) => [2,2,1,1] => 110110 => 101110 => 6
([3,2,1,1,1],4) => [2,1,1,1,1] => 1011110 => 0111110 => 6
([2,2,2,1,1,1],4) => [1,1,1,1,1,1] => 1111110 => 1111110 => 6
([2],5) => [2] => 100 => 010 => 2
([1,1],5) => [1,1] => 110 => 110 => 2
([3],5) => [3] => 1000 => 0010 => 3
([2,1],5) => [2,1] => 1010 => 0110 => 3
([1,1,1],5) => [1,1,1] => 1110 => 1110 => 3
([4],5) => [4] => 10000 => 00010 => 4
([3,1],5) => [3,1] => 10010 => 00110 => 4
([2,2],5) => [2,2] => 1100 => 1010 => 4
([2,1,1],5) => [2,1,1] => 10110 => 01110 => 4
([1,1,1,1],5) => [1,1,1,1] => 11110 => 11110 => 4
([5,1],5) => [4,1] => 100010 => 000110 => 5
([3,2],5) => [3,2] => 10100 => 10010 => 5
([4,1,1],5) => [3,1,1] => 100110 => 001110 => 5
([2,2,1],5) => [2,2,1] => 11010 => 10110 => 5
([3,1,1,1],5) => [2,1,1,1] => 101110 => 011110 => 5
([2,1,1,1,1],5) => [1,1,1,1,1] => 111110 => 111110 => 5
([6,2],5) => [4,2] => 100100 => 100010 => 6
([5,1,1],5) => [4,1,1] => 1000110 => 0001110 => 6
([3,3],5) => [3,3] => 11000 => 01010 => 6
([4,2,1],5) => [3,2,1] => 101010 => 100110 => 6
([4,1,1,1],5) => [3,1,1,1] => 1001110 => 0011110 => 6
([2,2,2],5) => [2,2,2] => 11100 => 11010 => 6
([3,2,1,1],5) => [2,2,1,1] => 110110 => 101110 => 6
([3,1,1,1,1],5) => [2,1,1,1,1] => 1011110 => 0111110 => 6
([2,2,1,1,1,1],5) => [1,1,1,1,1,1] => 1111110 => 1111110 => 6
([2],6) => [2] => 100 => 010 => 2
([1,1],6) => [1,1] => 110 => 110 => 2
([3],6) => [3] => 1000 => 0010 => 3
([2,1],6) => [2,1] => 1010 => 0110 => 3
([1,1,1],6) => [1,1,1] => 1110 => 1110 => 3
([4],6) => [4] => 10000 => 00010 => 4
([3,1],6) => [3,1] => 10010 => 00110 => 4
([2,2],6) => [2,2] => 1100 => 1010 => 4
([2,1,1],6) => [2,1,1] => 10110 => 01110 => 4
([1,1,1,1],6) => [1,1,1,1] => 11110 => 11110 => 4
([5],6) => [5] => 100000 => 000010 => 5
([4,1],6) => [4,1] => 100010 => 000110 => 5
([3,2],6) => [3,2] => 10100 => 10010 => 5
([3,1,1],6) => [3,1,1] => 100110 => 001110 => 5
([2,2,1],6) => [2,2,1] => 11010 => 10110 => 5
([2,1,1,1],6) => [2,1,1,1] => 101110 => 011110 => 5
([1,1,1,1,1],6) => [1,1,1,1,1] => 111110 => 111110 => 5
([6,1],6) => [5,1] => 1000010 => 0000110 => 6
([4,2],6) => [4,2] => 100100 => 100010 => 6
([5,1,1],6) => [4,1,1] => 1000110 => 0001110 => 6
([3,3],6) => [3,3] => 11000 => 01010 => 6
([3,2,1],6) => [3,2,1] => 101010 => 100110 => 6
([4,1,1,1],6) => [3,1,1,1] => 1001110 => 0011110 => 6
([2,2,2],6) => [2,2,2] => 11100 => 11010 => 6
([2,2,1,1],6) => [2,2,1,1] => 110110 => 101110 => 6
([3,1,1,1,1],6) => [2,1,1,1,1] => 1011110 => 0111110 => 6
([2,1,1,1,1,1],6) => [1,1,1,1,1,1] => 1111110 => 1111110 => 6
([7,2],6) => [5,2] => 1000100 => 1000010 => 7
([6,1,1],6) => [5,1,1] => 10000110 => 00001110 => 7
([4,3],6) => [4,3] => 101000 => 010010 => 7
([5,2,1],6) => [4,2,1] => 1001010 => 1000110 => 7
([5,1,1,1],6) => [4,1,1,1] => 10001110 => 00011110 => 7
([3,3,1],6) => [3,3,1] => 110010 => 010110 => 7
([3,2,2],6) => [3,2,2] => 101100 => 110010 => 7
([4,2,1,1],6) => [3,2,1,1] => 1010110 => 1001110 => 7
([4,1,1,1,1],6) => [3,1,1,1,1] => 10011110 => 00111110 => 7
([2,2,2,1],6) => [2,2,2,1] => 111010 => 110110 => 7
([3,2,1,1,1],6) => [2,2,1,1,1] => 1101110 => 1011110 => 7
([3,1,1,1,1,1],6) => [2,1,1,1,1,1] => 10111110 => 01111110 => 7
([2,2,1,1,1,1,1],6) => [1,1,1,1,1,1,1] => 11111110 => 11111110 => 7
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The major index of a binary word.
This is the sum of the positions of descents, i.e., a one followed by a zero.
For words of length $n$ with $a$ zeros, the generating function for the major index is the $q$-binomial coefficient $\binom{n}{a}_q$.
This is the sum of the positions of descents, i.e., a one followed by a zero.
For words of length $n$ with $a$ zeros, the generating function for the major index is the $q$-binomial coefficient $\binom{n}{a}_q$.
Map
to bounded partition
Description
The (k-1)-bounded partition of a k-core.
Starting with a $k$-core, deleting all cells of hook length greater than or equal to $k$ yields a $(k-1)$-bounded partition [1, Theorem 7], see also [2, Section 1.2].
Starting with a $k$-core, deleting all cells of hook length greater than or equal to $k$ yields a $(k-1)$-bounded partition [1, Theorem 7], see also [2, Section 1.2].
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
Map
inverse Foata bijection
Description
The inverse of Foata's bijection.
See Mp00096Foata bijection.
See Mp00096Foata bijection.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!