Identifier
-
Mp00001:
Alternating sign matrices
—to semistandard tableau via monotone triangles⟶
Semistandard tableaux
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000292: Binary words ⟶ ℤ
Values
[[1]] => [[1]] => [1] => 10 => 0
[[1,0],[0,1]] => [[1,1],[2]] => [2,1] => 1010 => 1
[[0,1],[1,0]] => [[1,2],[2]] => [2,1] => 1010 => 1
[[1,0,0],[0,1,0],[0,0,1]] => [[1,1,1],[2,2],[3]] => [3,2,1] => 101010 => 2
[[0,1,0],[1,0,0],[0,0,1]] => [[1,1,2],[2,2],[3]] => [3,2,1] => 101010 => 2
[[1,0,0],[0,0,1],[0,1,0]] => [[1,1,1],[2,3],[3]] => [3,2,1] => 101010 => 2
[[0,1,0],[1,-1,1],[0,1,0]] => [[1,1,2],[2,3],[3]] => [2,2,2] => 11100 => 0
[[0,0,1],[1,0,0],[0,1,0]] => [[1,1,3],[2,3],[3]] => [3,2,1] => 101010 => 2
[[0,1,0],[0,0,1],[1,0,0]] => [[1,2,2],[2,3],[3]] => [3,2,1] => 101010 => 2
[[0,0,1],[0,1,0],[1,0,0]] => [[1,2,3],[2,3],[3]] => [3,2,1] => 101010 => 2
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => [[1,1,1,1],[2,2,2],[3,3],[4]] => [4,3,2,1] => 10101010 => 3
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]] => [[1,1,1,2],[2,2,2],[3,3],[4]] => [4,3,2,1] => 10101010 => 3
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]] => [[1,1,1,1],[2,2,3],[3,3],[4]] => [4,3,2,1] => 10101010 => 3
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]] => [[1,1,1,2],[2,2,3],[3,3],[4]] => [3,3,3,1] => 1110010 => 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]] => [[1,1,1,3],[2,2,3],[3,3],[4]] => [4,3,2,1] => 10101010 => 3
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]] => [[1,1,2,2],[2,2,3],[3,3],[4]] => [4,3,2,1] => 10101010 => 3
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]] => [[1,1,2,3],[2,2,3],[3,3],[4]] => [4,3,2,1] => 10101010 => 3
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]] => [[1,1,1,1],[2,2,2],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => [[1,1,1,2],[2,2,2],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]] => [[1,1,1,1],[2,2,3],[3,4],[4]] => [4,2,2,2] => 10011100 => 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => [[1,1,1,2],[2,2,3],[3,4],[4]] => [3,3,2,2] => 1101100 => 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]] => [[1,1,1,3],[2,2,3],[3,4],[4]] => [3,3,2,2] => 1101100 => 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]] => [[1,1,2,2],[2,2,3],[3,4],[4]] => [4,2,2,2] => 10011100 => 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]] => [[1,1,2,3],[2,2,3],[3,4],[4]] => [3,3,2,2] => 1101100 => 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]] => [[1,1,1,1],[2,2,4],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]] => [[1,1,1,2],[2,2,4],[3,4],[4]] => [3,3,3,1] => 1110010 => 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]] => [[1,1,1,3],[2,2,4],[3,4],[4]] => [3,3,2,2] => 1101100 => 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]] => [[1,1,1,4],[2,2,4],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]] => [[1,1,2,2],[2,2,4],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]] => [[1,1,2,3],[2,2,4],[3,4],[4]] => [3,3,2,2] => 1101100 => 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]] => [[1,1,2,4],[2,2,4],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]] => [[1,1,1,1],[2,3,3],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]] => [[1,1,1,2],[2,3,3],[3,4],[4]] => [3,3,2,2] => 1101100 => 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]] => [[1,1,1,3],[2,3,3],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]] => [[1,1,2,2],[2,3,3],[3,4],[4]] => [3,3,2,2] => 1101100 => 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]] => [[1,1,2,3],[2,3,3],[3,4],[4]] => [4,2,2,2] => 10011100 => 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]] => [[1,1,1,1],[2,3,4],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]] => [[1,1,1,2],[2,3,4],[3,4],[4]] => [3,3,2,2] => 1101100 => 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]] => [[1,1,1,3],[2,3,4],[3,4],[4]] => [3,3,3,1] => 1110010 => 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]] => [[1,1,1,4],[2,3,4],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]] => [[1,1,2,2],[2,3,4],[3,4],[4]] => [3,3,2,2] => 1101100 => 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]] => [[1,1,2,3],[2,3,4],[3,4],[4]] => [3,3,2,2] => 1101100 => 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]] => [[1,1,2,4],[2,3,4],[3,4],[4]] => [4,2,2,2] => 10011100 => 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]] => [[1,1,3,3],[2,3,4],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]] => [[1,1,3,4],[2,3,4],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]] => [[1,2,2,2],[2,3,3],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]] => [[1,2,2,3],[2,3,3],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]] => [[1,2,2,2],[2,3,4],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]] => [[1,2,2,3],[2,3,4],[3,4],[4]] => [3,3,3,1] => 1110010 => 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]] => [[1,2,2,4],[2,3,4],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]] => [[1,2,3,3],[2,3,4],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]] => [[1,2,3,4],[2,3,4],[3,4],[4]] => [4,3,2,1] => 10101010 => 3
[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,4],[5]] => [4,4,4,2,1] => 111001010 => 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,2,3],[2,2,2,3],[3,3,3],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,4],[5]] => [4,4,3,3,1] => 110110010 => 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,3],[2,2,2,3],[3,3,4],[4,4],[5]] => [4,4,3,3,1] => 110110010 => 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,2,3],[2,2,2,3],[3,3,4],[4,4],[5]] => [4,4,3,3,1] => 110110010 => 2
[[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,2],[2,2,2,4],[3,3,4],[4,4],[5]] => [4,4,4,2,1] => 111001010 => 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,3],[2,2,2,4],[3,3,4],[4,4],[5]] => [4,4,3,3,1] => 110110010 => 2
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,2,2],[2,2,2,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,2,4],[2,2,2,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]] => [[1,1,1,1,1],[2,2,3,3],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]] => [[1,1,1,1,3],[2,2,3,3],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [[1,1,1,1,2],[2,2,3,4],[3,3,4],[4,4],[5]] => [4,4,3,3,1] => 110110010 => 2
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [[1,1,1,1,4],[2,2,3,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [[1,1,1,2,3],[2,2,3,4],[3,3,4],[4,4],[5]] => [4,4,3,3,1] => 110110010 => 2
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [[1,1,1,3,3],[2,2,3,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [[1,1,1,3,4],[2,2,3,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]] => [[1,1,2,2,2],[2,2,3,3],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]] => [[1,1,2,2,3],[2,2,3,3],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]] => [[1,1,2,2,2],[2,2,3,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]] => [[1,1,2,2,4],[2,2,3,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]] => [[1,1,2,3,3],[2,2,3,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]] => [[1,1,2,3,4],[2,2,3,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,5],[5]] => [4,4,4,2,1] => 111001010 => 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,5],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,2,3],[2,2,2,3],[3,3,3],[4,5],[5]] => [5,4,3,2,1] => 1010101010 => 4
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,5],[5]] => [5,3,3,2,2] => 1001101100 => 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,5],[5]] => [4,4,3,2,2] => 110101100 => 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,1,1,1,3],[2,2,2,3],[3,3,4],[4,5],[5]] => [4,4,3,2,2] => 110101100 => 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,1,1,2,3],[2,2,2,3],[3,3,4],[4,5],[5]] => [4,4,3,2,2] => 110101100 => 2
[[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,5],[5]] => [5,3,3,2,2] => 1001101100 => 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,1,1,1,2],[2,2,2,4],[3,3,4],[4,5],[5]] => [4,4,3,2,2] => 110101100 => 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,1,1,1,3],[2,2,2,4],[3,3,4],[4,5],[5]] => [4,3,3,3,2] => 101110100 => 2
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,5],[5]] => [4,4,3,2,2] => 110101100 => 2
[[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,5],[5]] => [5,3,3,2,2] => 1001101100 => 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => [[1,1,1,1,2],[2,2,3,4],[3,3,4],[4,5],[5]] => [4,3,3,3,2] => 101110100 => 2
>>> Load all 263 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of ascents of a binary word.
Map
to semistandard tableau via monotone triangles
Description
The semistandard tableau corresponding the monotone triangle of an alternating sign matrix.
This is obtained by interpreting each row of the monotone triangle as an integer partition, and filling the cells of the smallest partition with ones, the second smallest with twos, and so on.
This is obtained by interpreting each row of the monotone triangle as an integer partition, and filling the cells of the smallest partition with ones, the second smallest with twos, and so on.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
Map
weight
Description
The weight of a semistandard tableau as an integer partition.
The weight (or content) of a semistandard tableaux $T$ with maximal entry $m$ is the weak composition $(\alpha_1, \dots, \alpha_m)$ such that $\alpha_i$ is the number of letters $i$ occurring in $T$.
This map returns the integer partition obtained by sorting the weight into decreasing order and omitting zeros.
Since semistandard tableaux are bigraded by the size of the partition and the maximal occurring entry, this map is not graded.
The weight (or content) of a semistandard tableaux $T$ with maximal entry $m$ is the weak composition $(\alpha_1, \dots, \alpha_m)$ such that $\alpha_i$ is the number of letters $i$ occurring in $T$.
This map returns the integer partition obtained by sorting the weight into decreasing order and omitting zeros.
Since semistandard tableaux are bigraded by the size of the partition and the maximal occurring entry, this map is not graded.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!