Identifier
-
Mp00022:
Cores
—to partition⟶
Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000293: Binary words ⟶ ℤ
Values
([2],3) => [2] => 100 => 2
([1,1],3) => [1,1] => 110 => 2
([3,1],3) => [3,1] => 10010 => 4
([2,1,1],3) => [2,1,1] => 10110 => 4
([4,2],3) => [4,2] => 100100 => 6
([3,1,1],3) => [3,1,1] => 100110 => 5
([2,2,1,1],3) => [2,2,1,1] => 110110 => 6
([5,3,1],3) => [5,3,1] => 10010010 => 9
([4,2,1,1],3) => [4,2,1,1] => 10010110 => 8
([3,2,2,1,1],3) => [3,2,2,1,1] => 10110110 => 9
([6,4,2],3) => [6,4,2] => 100100100 => 12
([5,3,1,1],3) => [5,3,1,1] => 100100110 => 10
([4,2,2,1,1],3) => [4,2,2,1,1] => 100110110 => 10
([3,3,2,2,1,1],3) => [3,3,2,2,1,1] => 110110110 => 12
([2],4) => [2] => 100 => 2
([1,1],4) => [1,1] => 110 => 2
([3],4) => [3] => 1000 => 3
([2,1],4) => [2,1] => 1010 => 3
([1,1,1],4) => [1,1,1] => 1110 => 3
([4,1],4) => [4,1] => 100010 => 5
([2,2],4) => [2,2] => 1100 => 4
([3,1,1],4) => [3,1,1] => 100110 => 5
([2,1,1,1],4) => [2,1,1,1] => 101110 => 5
([5,2],4) => [5,2] => 1000100 => 7
([4,1,1],4) => [4,1,1] => 1000110 => 6
([3,2,1],4) => [3,2,1] => 101010 => 6
([3,1,1,1],4) => [3,1,1,1] => 1001110 => 6
([2,2,1,1,1],4) => [2,2,1,1,1] => 1101110 => 7
([6,3],4) => [6,3] => 10001000 => 9
([5,2,1],4) => [5,2,1] => 10001010 => 8
([4,1,1,1],4) => [4,1,1,1] => 10001110 => 7
([4,2,2],4) => [4,2,2] => 1001100 => 8
([3,3,1,1],4) => [3,3,1,1] => 1100110 => 8
([3,2,1,1,1],4) => [3,2,1,1,1] => 10101110 => 8
([2,2,2,1,1,1],4) => [2,2,2,1,1,1] => 11101110 => 9
([2],5) => [2] => 100 => 2
([1,1],5) => [1,1] => 110 => 2
([3],5) => [3] => 1000 => 3
([2,1],5) => [2,1] => 1010 => 3
([1,1,1],5) => [1,1,1] => 1110 => 3
([4],5) => [4] => 10000 => 4
([3,1],5) => [3,1] => 10010 => 4
([2,2],5) => [2,2] => 1100 => 4
([2,1,1],5) => [2,1,1] => 10110 => 4
([1,1,1,1],5) => [1,1,1,1] => 11110 => 4
([5,1],5) => [5,1] => 1000010 => 6
([3,2],5) => [3,2] => 10100 => 5
([4,1,1],5) => [4,1,1] => 1000110 => 6
([2,2,1],5) => [2,2,1] => 11010 => 5
([3,1,1,1],5) => [3,1,1,1] => 1001110 => 6
([2,1,1,1,1],5) => [2,1,1,1,1] => 1011110 => 6
([6,2],5) => [6,2] => 10000100 => 8
([5,1,1],5) => [5,1,1] => 10000110 => 7
([3,3],5) => [3,3] => 11000 => 6
([4,2,1],5) => [4,2,1] => 1001010 => 7
([4,1,1,1],5) => [4,1,1,1] => 10001110 => 7
([2,2,2],5) => [2,2,2] => 11100 => 6
([3,2,1,1],5) => [3,2,1,1] => 1010110 => 7
([3,1,1,1,1],5) => [3,1,1,1,1] => 10011110 => 7
([2,2,1,1,1,1],5) => [2,2,1,1,1,1] => 11011110 => 8
([2],6) => [2] => 100 => 2
([1,1],6) => [1,1] => 110 => 2
([3],6) => [3] => 1000 => 3
([2,1],6) => [2,1] => 1010 => 3
([1,1,1],6) => [1,1,1] => 1110 => 3
([4],6) => [4] => 10000 => 4
([3,1],6) => [3,1] => 10010 => 4
([2,2],6) => [2,2] => 1100 => 4
([2,1,1],6) => [2,1,1] => 10110 => 4
([1,1,1,1],6) => [1,1,1,1] => 11110 => 4
([5],6) => [5] => 100000 => 5
([4,1],6) => [4,1] => 100010 => 5
([3,2],6) => [3,2] => 10100 => 5
([3,1,1],6) => [3,1,1] => 100110 => 5
([2,2,1],6) => [2,2,1] => 11010 => 5
([2,1,1,1],6) => [2,1,1,1] => 101110 => 5
([1,1,1,1,1],6) => [1,1,1,1,1] => 111110 => 5
([6,1],6) => [6,1] => 10000010 => 7
([4,2],6) => [4,2] => 100100 => 6
([5,1,1],6) => [5,1,1] => 10000110 => 7
([3,3],6) => [3,3] => 11000 => 6
([3,2,1],6) => [3,2,1] => 101010 => 6
([4,1,1,1],6) => [4,1,1,1] => 10001110 => 7
([2,2,2],6) => [2,2,2] => 11100 => 6
([2,2,1,1],6) => [2,2,1,1] => 110110 => 6
([3,1,1,1,1],6) => [3,1,1,1,1] => 10011110 => 7
([2,1,1,1,1,1],6) => [2,1,1,1,1,1] => 10111110 => 7
([7,2],6) => [7,2] => 100000100 => 9
([6,1,1],6) => [6,1,1] => 100000110 => 8
([4,3],6) => [4,3] => 101000 => 7
([5,2,1],6) => [5,2,1] => 10001010 => 8
([5,1,1,1],6) => [5,1,1,1] => 100001110 => 8
([3,3,1],6) => [3,3,1] => 110010 => 7
([3,2,2],6) => [3,2,2] => 101100 => 7
([4,2,1,1],6) => [4,2,1,1] => 10010110 => 8
([4,1,1,1,1],6) => [4,1,1,1,1] => 100011110 => 8
([2,2,2,1],6) => [2,2,2,1] => 111010 => 7
([3,2,1,1,1],6) => [3,2,1,1,1] => 10101110 => 8
([3,1,1,1,1,1],6) => [3,1,1,1,1,1] => 100111110 => 8
([2,2,1,1,1,1,1],6) => [2,2,1,1,1,1,1] => 110111110 => 9
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of inversions of a binary word.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
Map
to partition
Description
Considers a core as a partition.
This embedding is graded and injective but not surjective on $k$-cores for a given parameter $k$, while it is surjective and neither graded nor injective on the collection of all cores.
This embedding is graded and injective but not surjective on $k$-cores for a given parameter $k$, while it is surjective and neither graded nor injective on the collection of all cores.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!