Identifier
- St000295: Binary words ⟶ ℤ
Values
0 => 0
1 => 0
00 => 1
01 => 0
10 => 0
11 => 1
000 => 2
001 => 0
010 => 1
011 => 0
100 => 0
101 => 1
110 => 0
111 => 2
0000 => 3
0001 => 0
0010 => 1
0011 => 0
0100 => 1
0101 => 2
0110 => 1
0111 => 0
1000 => 0
1001 => 1
1010 => 2
1011 => 1
1100 => 0
1101 => 1
1110 => 0
1111 => 3
00000 => 4
00001 => 0
00010 => 1
00011 => 0
00100 => 2
00101 => 0
00110 => 1
00111 => 0
01000 => 1
01001 => 2
01010 => 3
01011 => 0
01100 => 1
01101 => 2
01110 => 1
01111 => 0
10000 => 0
10001 => 1
10010 => 2
10011 => 1
10100 => 0
10101 => 3
10110 => 2
10111 => 1
11000 => 0
11001 => 1
11010 => 0
11011 => 2
11100 => 0
11101 => 1
11110 => 0
11111 => 4
000000 => 5
000001 => 0
000010 => 1
000011 => 0
000100 => 2
000101 => 0
000110 => 1
000111 => 0
001000 => 2
001001 => 3
001010 => 1
001011 => 0
001100 => 2
001101 => 0
001110 => 1
001111 => 0
010000 => 1
010001 => 2
010010 => 3
010011 => 0
010100 => 1
010101 => 4
010110 => 1
010111 => 0
011000 => 1
011001 => 2
011010 => 1
011011 => 3
011100 => 1
011101 => 2
011110 => 1
011111 => 0
100000 => 0
100001 => 1
100010 => 2
100011 => 1
100100 => 3
100101 => 1
100110 => 2
>>> Load all 1200 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The length of the border of a binary word.
The border of a word is the longest word which is both a proper prefix and a proper suffix, including a possible empty border.
The border of a word is the longest word which is both a proper prefix and a proper suffix, including a possible empty border.
Code
def statistic(x):
return x.length_border()
Created
Nov 19, 2015 at 12:22 by Martin Rubey
Updated
Nov 19, 2015 at 12:53 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!