Identifier
Values
[] => ([],1) => ([],1) => ([(0,1)],2) => 2
[[]] => ([(0,1)],2) => ([],2) => ([(0,2),(1,2)],3) => 3
[[],[]] => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
[[[]]] => ([(0,2),(2,1)],3) => ([],3) => ([(0,3),(1,3),(2,3)],4) => 4
[[],[],[]] => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => ([(1,3),(2,3)],4) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => ([(1,3),(2,3)],4) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[[],[]]] => ([(0,3),(1,3),(3,2)],4) => ([(2,3)],4) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[[[]]]] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 5
[[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[],[]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[[]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[[]],[[]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 4
[[[],[]],[]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[[[]]],[]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[],[],[]]] => ([(0,4),(1,4),(2,4),(4,3)],5) => ([(2,3),(2,4),(3,4)],5) => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[[],[[]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(2,4),(3,4)],5) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[[]],[]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(2,4),(3,4)],5) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(3,4)],5) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[[[]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 6
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of nonisomorphic vertex-induced subtrees.
Map
cone
Description
The cone of a graph.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
to poset
Description
Return the poset obtained by interpreting the tree as the Hasse diagram of a graph.