Processing math: 100%

edit this statistic or download as text // json
Identifier
Values
([],1) => 0
([(0,1)],2) => -1
([(0,2),(1,2)],3) => 4
([(0,1),(0,2),(1,2)],3) => 2
([(0,3),(1,3),(2,3)],4) => -12
([(0,3),(1,2),(2,3)],4) => -12
([(0,3),(1,2),(1,3),(2,3)],4) => -7
([(0,2),(0,3),(1,2),(1,3)],4) => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => -4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => -3
([(0,4),(1,4),(2,4),(3,4)],5) => 32
([(0,4),(1,4),(2,3),(3,4)],5) => 32
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 20
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 20
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 12
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => -16
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 8
([(0,4),(1,3),(2,3),(2,4)],5) => 32
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 20
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 12
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 6
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 12
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 10
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => -4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => -80
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => -80
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => -52
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => -80
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => -80
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => -52
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -32
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 48
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -32
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -20
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 64
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -16
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => -80
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => -52
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => -33
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => -17
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => -52
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -32
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => -17
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => -80
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => -52
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => -52
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => -52
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => -32
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => -33
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -20
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => -32
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -28
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => 28
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -20
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => -17
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => -8
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 12
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -28
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -17
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 32
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -12
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 48
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 12
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 0
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => -9
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => -32
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => -17
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => -9
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 48
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 12
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 28
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 12
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -17
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -12
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 7
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => -8
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -9
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -8
>>> Load all 143 entries. <<<
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 112
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 44
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 16
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 16
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -4
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => -32
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => -33
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => -20
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -28
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -17
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 7
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -17
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -9
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -8
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 12
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -9
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => 7
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => -5
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => -5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 0
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -5
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 7
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -9
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -5
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -12
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -13
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -8
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 8
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 15
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -4
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -5
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The determinant of the distance matrix of a connected graph.
Code
def statistic(G):
    return G.distance_matrix().det()
Created
Nov 26, 2015 at 12:07 by Christian Stump
Updated
Nov 26, 2015 at 12:07 by Christian Stump