Identifier
-
Mp00199:
Dyck paths
—prime Dyck path⟶
Dyck paths
Mp00124: Dyck paths —Adin-Bagno-Roichman transformation⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St000306: Dyck paths ⟶ ℤ (values match St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c0,c1,...,cn−1] such that n=c0<ci for all i>0 a Dyck path as follows: )
Values
[1,0] => [1,1,0,0] => [1,1,0,0] => [1,0,1,0] => 1
[1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => [1,0,1,1,0,0] => 1
[1,1,0,0] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 2
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 1
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => 2
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => 1
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => 2
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 3
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 2
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => 1
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => 3
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => 1
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => 2
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => 1
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => 2
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => 3
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => 2
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => 2
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => 3
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 4
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => 3
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => 1
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => 2
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => 1
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 3
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 2
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => 2
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 3
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => 4
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => 1
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => 2
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 1
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,1,0,1,0,0] => 2
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => 3
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => 1
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => 2
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 1
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 2
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => 3
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => 2
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => 2
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 3
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 4
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => 2
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 2
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => 2
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => 2
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => 3
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => 2
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => 2
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => 3
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => 4
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => 3
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 3
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => 3
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => 4
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 1
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => 2
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => 2
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => 2
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,1,1,0,1,1,0,0,0,0] => 2
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,1,0,1,1,0,0,0,0] => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0] => 3
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => 2
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => 3
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => 4
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => 2
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => 2
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,1,0,0,1,1,0,0,0] => 2
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0,1,1,0,0] => 2
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,1,0,0] => 3
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0,1,1,0,0] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => 4
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,1,1,0,0,0] => 3
[1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,1,0,0] => 3
[1,0,1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,1,0,0] => 3
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => 4
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => 5
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,1,1,1,0,1,0,0,0,0,0] => 1
[1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,1,1,1,0,1,0,0,0,0] => 2
[1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,1,1,0,1,0,0,0,0] => 1
[1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => 2
[1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => 2
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0] => 4
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,1,1,1,0,0,1,0,0,0,0] => 1
[1,1,0,1,0,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,1,0,0] => 3
[1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,1,0,0] => [1,1,1,1,0,1,1,0,0,0,1,0,0,0] => 1
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,1,0,0] => 1
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => 2
[1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => 3
[1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 3
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,0,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => 4
>>> Load all 226 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The bounce count of a Dyck path.
For a Dyck path D of length 2n, this is the number of points (i,i) for 1≤i<n that are touching points of the bounce path of D.
For a Dyck path D of length 2n, this is the number of points (i,i) for 1≤i<n that are touching points of the bounce path of D.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
Adin-Bagno-Roichman transformation
Description
The Adin-Bagno-Roichman transformation of a Dyck path.
This is a bijection preserving the number of up steps before each peak and sending the number of returns to the number of up steps after the last double up step.
This is a bijection preserving the number of up steps before each peak and sending the number of returns to the number of up steps after the last double up step.
Map
zeta map
Description
The zeta map on Dyck paths.
The zeta map ζ is a bijection on Dyck paths of semilength n.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path D with corresponding area sequence a=(a1,…,an) to a Dyck path as follows:
The zeta map ζ is a bijection on Dyck paths of semilength n.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path D with corresponding area sequence a=(a1,…,an) to a Dyck path as follows:
- First, build an intermediate Dyck path consisting of d1 north steps, followed by d1 east steps, followed by d2 north steps and d2 east steps, and so on, where di is the number of i−1's within the sequence a.
For example, given a=(0,1,2,2,2,3,1,2), we build the path
NE NNEE NNNNEEEE NE. - Next, the rectangles between two consecutive peaks are filled. Observe that such the rectangle between the kth and the (k+1)st peak must be filled by dk east steps and dk+1 north steps. In the above example, the rectangle between the second and the third peak must be filled by 2 east and 4 north steps, the 2 being the number of 1's in a, and 4 being the number of 2's. To fill such a rectangle, scan through the sequence a from left to right, and add east or north steps whenever you see a k−1 or k, respectively. So to fill the 2×4 rectangle, we look for 1's and 2's in the sequence and see 122212, so this rectangle gets filled with ENNNEN.
The complete path we obtain in thus
NENNENNNENEEENEE.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!