Processing math: 100%

Identifier
Values
[[1,2]] => 0 => ([(0,1)],2) => 1
[[1],[2]] => 1 => ([(0,1)],2) => 1
[[1,2,3]] => 00 => ([(0,2),(2,1)],3) => 1
[[1,3],[2]] => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[[1,2],[3]] => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[[1],[2],[3]] => 11 => ([(0,2),(2,1)],3) => 1
[[1,2,3,4]] => 000 => ([(0,3),(2,1),(3,2)],4) => 1
[[1,3,4],[2]] => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[[1,2,4],[3]] => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 3
[[1,2,3],[4]] => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[[1,3],[2,4]] => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 3
[[1,2],[3,4]] => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 3
[[1,4],[2],[3]] => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[[1,3],[2],[4]] => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 3
[[1,2],[3],[4]] => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[[1],[2],[3],[4]] => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[[1,2,3,4,5]] => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[[1],[2],[3],[4],[5]] => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[[1,2,3,4,5,6]] => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[[1],[2],[3],[4],[5],[6]] => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[[1,2,3,4,5,6,7]] => 000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[[1],[2],[3],[4],[5],[6],[7]] => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of rowmotion orbits of a poset.
Rowmotion is an operation on order ideals in a poset P. It sends an order ideal I to the order ideal generated by the minimal antichain of PI.
Map
descent word
Description
The descent word of a standard Young tableau.
For a standard Young tableau of size n we set wi=1 if i+1 is in a lower row than i, and 0 otherwise, for 1i<n.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that u<v if and only if u is a factor of v.