Identifier
-
Mp00049:
Ordered trees
—to binary tree: left brother = left child⟶
Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000310: Graphs ⟶ ℤ
Values
[[]] => [.,.] => [1] => ([],1) => 0
[[],[]] => [[.,.],.] => [1,2] => ([],2) => 0
[[[]]] => [.,[.,.]] => [2,1] => ([(0,1)],2) => 1
[[],[],[]] => [[[.,.],.],.] => [1,2,3] => ([],3) => 0
[[],[[]]] => [[.,.],[.,.]] => [1,3,2] => ([(1,2)],3) => 0
[[[]],[]] => [[.,[.,.]],.] => [2,1,3] => ([(1,2)],3) => 0
[[[],[]]] => [.,[[.,.],.]] => [2,3,1] => ([(0,2),(1,2)],3) => 1
[[[[]]]] => [.,[.,[.,.]]] => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => 2
[[],[],[],[]] => [[[[.,.],.],.],.] => [1,2,3,4] => ([],4) => 0
[[],[],[[]]] => [[[.,.],.],[.,.]] => [1,2,4,3] => ([(2,3)],4) => 0
[[],[[]],[]] => [[[.,.],[.,.]],.] => [1,3,2,4] => ([(2,3)],4) => 0
[[],[[],[]]] => [[.,.],[[.,.],.]] => [1,3,4,2] => ([(1,3),(2,3)],4) => 0
[[],[[[]]]] => [[.,.],[.,[.,.]]] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4) => 0
[[[]],[],[]] => [[[.,[.,.]],.],.] => [2,1,3,4] => ([(2,3)],4) => 0
[[[]],[[]]] => [[.,[.,.]],[.,.]] => [2,1,4,3] => ([(0,3),(1,2)],4) => 1
[[[],[]],[]] => [[.,[[.,.],.]],.] => [2,3,1,4] => ([(1,3),(2,3)],4) => 0
[[[[]]],[]] => [[.,[.,[.,.]]],.] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4) => 0
[[[],[],[]]] => [.,[[[.,.],.],.]] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4) => 1
[[[],[[]]]] => [.,[[.,.],[.,.]]] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
[[[[]],[]]] => [.,[[.,[.,.]],.]] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
[[[[],[]]]] => [.,[.,[[.,.],.]]] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[[[[[]]]]] => [.,[.,[.,[.,.]]]] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[],[],[],[],[]] => [[[[[.,.],.],.],.],.] => [1,2,3,4,5] => ([],5) => 0
[[],[],[],[[]]] => [[[[.,.],.],.],[.,.]] => [1,2,3,5,4] => ([(3,4)],5) => 0
[[],[],[[]],[]] => [[[[.,.],.],[.,.]],.] => [1,2,4,3,5] => ([(3,4)],5) => 0
[[],[],[[],[]]] => [[[.,.],.],[[.,.],.]] => [1,2,4,5,3] => ([(2,4),(3,4)],5) => 0
[[],[],[[[]]]] => [[[.,.],.],[.,[.,.]]] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5) => 0
[[],[[]],[],[]] => [[[[.,.],[.,.]],.],.] => [1,3,2,4,5] => ([(3,4)],5) => 0
[[],[[]],[[]]] => [[[.,.],[.,.]],[.,.]] => [1,3,2,5,4] => ([(1,4),(2,3)],5) => 0
[[],[[],[]],[]] => [[[.,.],[[.,.],.]],.] => [1,3,4,2,5] => ([(2,4),(3,4)],5) => 0
[[],[[[]]],[]] => [[[.,.],[.,[.,.]]],.] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5) => 0
[[],[[],[],[]]] => [[.,.],[[[.,.],.],.]] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5) => 0
[[],[[],[[]]]] => [[.,.],[[.,.],[.,.]]] => [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 0
[[],[[[]],[]]] => [[.,.],[[.,[.,.]],.]] => [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 0
[[],[[[],[]]]] => [[.,.],[.,[[.,.],.]]] => [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
[[],[[[[]]]]] => [[.,.],[.,[.,[.,.]]]] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
[[[]],[],[],[]] => [[[[.,[.,.]],.],.],.] => [2,1,3,4,5] => ([(3,4)],5) => 0
[[[]],[],[[]]] => [[[.,[.,.]],.],[.,.]] => [2,1,3,5,4] => ([(1,4),(2,3)],5) => 0
[[[]],[[]],[]] => [[[.,[.,.]],[.,.]],.] => [2,1,4,3,5] => ([(1,4),(2,3)],5) => 0
[[[]],[[],[]]] => [[.,[.,.]],[[.,.],.]] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5) => 1
[[[]],[[[]]]] => [[.,[.,.]],[.,[.,.]]] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5) => 1
[[[],[]],[],[]] => [[[.,[[.,.],.]],.],.] => [2,3,1,4,5] => ([(2,4),(3,4)],5) => 0
[[[[]]],[],[]] => [[[.,[.,[.,.]]],.],.] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5) => 0
[[[],[]],[[]]] => [[.,[[.,.],.]],[.,.]] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5) => 1
[[[[]]],[[]]] => [[.,[.,[.,.]]],[.,.]] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5) => 1
[[[],[],[]],[]] => [[.,[[[.,.],.],.]],.] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5) => 0
[[[],[[]]],[]] => [[.,[[.,.],[.,.]]],.] => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5) => 0
[[[[]],[]],[]] => [[.,[[.,[.,.]],.]],.] => [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5) => 0
[[[[],[]]],[]] => [[.,[.,[[.,.],.]]],.] => [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
[[[[[]]]],[]] => [[.,[.,[.,[.,.]]]],.] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
[[[],[],[],[]]] => [.,[[[[.,.],.],.],.]] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
[[[],[],[[]]]] => [.,[[[.,.],.],[.,.]]] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 1
[[[],[[]],[]]] => [.,[[[.,.],[.,.]],.]] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 1
[[[],[[],[]]]] => [.,[[.,.],[[.,.],.]]] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[[[],[[[]]]]] => [.,[[.,.],[.,[.,.]]]] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[[[[]],[],[]]] => [.,[[[.,[.,.]],.],.]] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 1
[[[[]],[[]]]] => [.,[[.,[.,.]],[.,.]]] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 2
[[[[],[]],[]]] => [.,[[.,[[.,.],.]],.]] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[[[[[]]],[]]] => [.,[[.,[.,[.,.]]],.]] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[[[[],[],[]]]] => [.,[.,[[[.,.],.],.]]] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[[[],[[]]]]] => [.,[.,[[.,.],[.,.]]]] => [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[[[[]],[]]]] => [.,[.,[[.,[.,.]],.]]] => [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[[[[],[]]]]] => [.,[.,[.,[[.,.],.]]]] => [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[[[[[]]]]]] => [.,[.,[.,[.,[.,.]]]]] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[],[],[],[],[],[]] => [[[[[[.,.],.],.],.],.],.] => [1,2,3,4,5,6] => ([],6) => 0
[[],[],[],[],[[]]] => [[[[[.,.],.],.],.],[.,.]] => [1,2,3,4,6,5] => ([(4,5)],6) => 0
[[],[],[],[[]],[]] => [[[[[.,.],.],.],[.,.]],.] => [1,2,3,5,4,6] => ([(4,5)],6) => 0
[[],[],[],[[],[]]] => [[[[.,.],.],.],[[.,.],.]] => [1,2,3,5,6,4] => ([(3,5),(4,5)],6) => 0
[[],[],[],[[[]]]] => [[[[.,.],.],.],[.,[.,.]]] => [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6) => 0
[[],[],[[]],[],[]] => [[[[[.,.],.],[.,.]],.],.] => [1,2,4,3,5,6] => ([(4,5)],6) => 0
[[],[],[[]],[[]]] => [[[[.,.],.],[.,.]],[.,.]] => [1,2,4,3,6,5] => ([(2,5),(3,4)],6) => 0
[[],[],[[],[]],[]] => [[[[.,.],.],[[.,.],.]],.] => [1,2,4,5,3,6] => ([(3,5),(4,5)],6) => 0
[[],[],[[[]]],[]] => [[[[.,.],.],[.,[.,.]]],.] => [1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6) => 0
[[],[],[[],[],[]]] => [[[.,.],.],[[[.,.],.],.]] => [1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6) => 0
[[],[],[[],[[]]]] => [[[.,.],.],[[.,.],[.,.]]] => [1,2,4,6,5,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 0
[[],[],[[[]],[]]] => [[[.,.],.],[[.,[.,.]],.]] => [1,2,5,4,6,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 0
[[],[],[[[],[]]]] => [[[.,.],.],[.,[[.,.],.]]] => [1,2,5,6,4,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
[[],[],[[[[]]]]] => [[[.,.],.],[.,[.,[.,.]]]] => [1,2,6,5,4,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
[[],[[]],[],[],[]] => [[[[[.,.],[.,.]],.],.],.] => [1,3,2,4,5,6] => ([(4,5)],6) => 0
[[],[[]],[],[[]]] => [[[[.,.],[.,.]],.],[.,.]] => [1,3,2,4,6,5] => ([(2,5),(3,4)],6) => 0
[[],[[]],[[]],[]] => [[[[.,.],[.,.]],[.,.]],.] => [1,3,2,5,4,6] => ([(2,5),(3,4)],6) => 0
[[],[[]],[[],[]]] => [[[.,.],[.,.]],[[.,.],.]] => [1,3,2,5,6,4] => ([(1,2),(3,5),(4,5)],6) => 0
[[],[[]],[[[]]]] => [[[.,.],[.,.]],[.,[.,.]]] => [1,3,2,6,5,4] => ([(1,2),(3,4),(3,5),(4,5)],6) => 0
[[],[[],[]],[],[]] => [[[[.,.],[[.,.],.]],.],.] => [1,3,4,2,5,6] => ([(3,5),(4,5)],6) => 0
[[],[[[]]],[],[]] => [[[[.,.],[.,[.,.]]],.],.] => [1,4,3,2,5,6] => ([(3,4),(3,5),(4,5)],6) => 0
[[],[[],[]],[[]]] => [[[.,.],[[.,.],.]],[.,.]] => [1,3,4,2,6,5] => ([(1,2),(3,5),(4,5)],6) => 0
[[],[[[]]],[[]]] => [[[.,.],[.,[.,.]]],[.,.]] => [1,4,3,2,6,5] => ([(1,2),(3,4),(3,5),(4,5)],6) => 0
[[],[[],[],[]],[]] => [[[.,.],[[[.,.],.],.]],.] => [1,3,4,5,2,6] => ([(2,5),(3,5),(4,5)],6) => 0
[[],[[],[[]]],[]] => [[[.,.],[[.,.],[.,.]]],.] => [1,3,5,4,2,6] => ([(2,5),(3,4),(3,5),(4,5)],6) => 0
[[],[[[]],[]],[]] => [[[.,.],[[.,[.,.]],.]],.] => [1,4,3,5,2,6] => ([(2,5),(3,4),(3,5),(4,5)],6) => 0
[[],[[[],[]]],[]] => [[[.,.],[.,[[.,.],.]]],.] => [1,4,5,3,2,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
[[],[[[[]]]],[]] => [[[.,.],[.,[.,[.,.]]]],.] => [1,5,4,3,2,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
[[],[[],[],[],[]]] => [[.,.],[[[[.,.],.],.],.]] => [1,3,4,5,6,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 0
[[],[[],[],[[]]]] => [[.,.],[[[.,.],.],[.,.]]] => [1,3,4,6,5,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 0
[[],[[],[[]],[]]] => [[.,.],[[[.,.],[.,.]],.]] => [1,3,5,4,6,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 0
[[],[[],[[],[]]]] => [[.,.],[[.,.],[[.,.],.]]] => [1,3,5,6,4,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
[[],[[],[[[]]]]] => [[.,.],[[.,.],[.,[.,.]]]] => [1,3,6,5,4,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
[[],[[[]],[],[]]] => [[.,.],[[[.,[.,.]],.],.]] => [1,4,3,5,6,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 0
[[],[[[]],[[]]]] => [[.,.],[[.,[.,.]],[.,.]]] => [1,4,3,6,5,2] => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
[[],[[[],[]],[]]] => [[.,.],[[.,[[.,.],.]],.]] => [1,4,5,3,6,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
[[],[[[[]]],[]]] => [[.,.],[[.,[.,[.,.]]],.]] => [1,5,4,3,6,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The minimal degree of a vertex of a graph.
Map
to binary tree: left brother = left child
Description
Return a binary tree of size $n-1$ (where $n$ is the size of $t$, and where $t$ is an ordered tree) by the following recursive rule:
- if $x$ is the left brother of $y$ in $t$, then $x$ becomes the left child of $y$;
- if $x$ is the last child of $y$ in $t$, then $x$ becomes the right child of $y$,
and removing the root of $t$.
- if $x$ is the left brother of $y$ in $t$, then $x$ becomes the left child of $y$;
- if $x$ is the last child of $y$ in $t$, then $x$ becomes the right child of $y$,
and removing the root of $t$.
Map
to 312-avoiding permutation
Description
Return a 312-avoiding permutation corresponding to a binary tree.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the minimal element of this Sylvester class.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the minimal element of this Sylvester class.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!