Identifier
-
Mp00025:
Dyck paths
—to 132-avoiding permutation⟶
Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00318: Graphs —dual on components⟶ Graphs
St000310: Graphs ⟶ ℤ
Values
[1,0] => [1] => ([],1) => ([],1) => 0
[1,0,1,0] => [2,1] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,1,0,0] => [1,2] => ([],2) => ([],2) => 0
[1,0,1,0,1,0] => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
[1,0,1,1,0,0] => [2,3,1] => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 1
[1,1,0,0,1,0] => [3,1,2] => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 1
[1,1,0,1,0,0] => [2,1,3] => ([(1,2)],3) => ([(1,2)],3) => 0
[1,1,1,0,0,0] => [1,2,3] => ([],3) => ([],3) => 0
[1,0,1,0,1,0,1,0] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[1,0,1,0,1,1,0,0] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,0,1,0] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,1,0,0] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
[1,0,1,1,1,0,0,0] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 1
[1,1,0,0,1,0,1,0] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[1,1,0,0,1,1,0,0] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 2
[1,1,0,1,0,0,1,0] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
[1,1,0,1,0,1,0,0] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => 0
[1,1,0,1,1,0,0,0] => [2,3,1,4] => ([(1,3),(2,3)],4) => ([(1,3),(2,3)],4) => 0
[1,1,1,0,0,0,1,0] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 1
[1,1,1,0,0,1,0,0] => [3,1,2,4] => ([(1,3),(2,3)],4) => ([(1,3),(2,3)],4) => 0
[1,1,1,0,1,0,0,0] => [2,1,3,4] => ([(2,3)],4) => ([(2,3)],4) => 0
[1,1,1,1,0,0,0,0] => [1,2,3,4] => ([],4) => ([],4) => 0
[1,0,1,0,1,0,1,0,1,0] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[1,0,1,0,1,0,1,1,0,0] => [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 3
[1,0,1,0,1,1,0,0,1,0] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 3
[1,0,1,0,1,1,0,1,0,0] => [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,0,1,0,1,1,1,0,0,0] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,0,1,1,0,0,1,0,1,0] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 3
[1,0,1,1,0,0,1,1,0,0] => [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 3
[1,0,1,1,0,1,0,0,1,0] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,0,1,1,0,1,0,1,0,0] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,0,1,1,0,1,1,0,0,0] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,0,1,1,1,0,0,0,1,0] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,0,1,1,1,0,0,1,0,0] => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,0,1,1,1,0,1,0,0,0] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,0,1,1,1,1,0,0,0,0] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
[1,1,0,0,1,0,1,0,1,0] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 3
[1,1,0,0,1,0,1,1,0,0] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 3
[1,1,0,0,1,1,0,0,1,0] => [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 3
[1,1,0,0,1,1,0,1,0,0] => [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 2
[1,1,0,0,1,1,1,0,0,0] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 2
[1,1,0,1,0,0,1,0,1,0] => [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,0,1,0,0,1,1,0,0] => [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 2
[1,1,0,1,0,1,0,0,1,0] => [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
[1,1,0,1,0,1,1,0,0,0] => [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
[1,1,0,1,1,0,0,0,1,0] => [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,1,0,1,1,0,0,1,0,0] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
[1,1,0,1,1,0,1,0,0,0] => [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => 0
[1,1,0,1,1,1,0,0,0,0] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 0
[1,1,1,0,0,0,1,0,1,0] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,1,0,0,0,1,1,0,0] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 2
[1,1,1,0,0,1,0,0,1,0] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,1,1,0,0,1,0,1,0,0] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
[1,1,1,0,0,1,1,0,0,0] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => 0
[1,1,1,0,1,0,0,0,1,0] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,1,1,0,1,0,0,1,0,0] => [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => 0
[1,1,1,0,1,0,1,0,0,0] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(3,4)],5) => 0
[1,1,1,0,1,1,0,0,0,0] => [2,3,1,4,5] => ([(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => 0
[1,1,1,1,0,0,0,0,1,0] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
[1,1,1,1,0,0,0,1,0,0] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 0
[1,1,1,1,0,0,1,0,0,0] => [3,1,2,4,5] => ([(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => 0
[1,1,1,1,0,1,0,0,0,0] => [2,1,3,4,5] => ([(3,4)],5) => ([(3,4)],5) => 0
[1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => ([],5) => ([],5) => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,0,1,0,1,0,1,0,1,1,0,0] => [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,0,1,0,1,0,1,1,0,0,1,0] => [6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,0,1,0,1,0,1,1,0,1,0,0] => [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,0,1,0,1,0,1,1,1,0,0,0] => [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,0,1,0,1,1,0,0,1,0,1,0] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,0,1,0,1,1,0,0,1,1,0,0] => [5,6,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,0,1,0,1,1,0,1,0,0,1,0] => [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,0,1,0,1,1,0,1,0,1,0,0] => [5,4,3,6,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,0,1,0,1,1,0,1,1,0,0,0] => [4,5,3,6,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,0,1,0,1,1,1,0,0,0,1,0] => [6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,0,1,0,1,1,1,0,0,1,0,0] => [5,3,4,6,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => [4,3,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,0,1,0,1,1,1,1,0,0,0,0] => [3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,0,1,1,0,0,1,0,1,0,1,0] => [6,5,4,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,0,1,1,0,0,1,0,1,1,0,0] => [5,6,4,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,0,1,1,0,0,1,1,0,0,1,0] => [6,4,5,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,0,1,1,0,0,1,1,0,1,0,0] => [5,4,6,2,3,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3
[1,0,1,1,0,0,1,1,1,0,0,0] => [4,5,6,2,3,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3
[1,0,1,1,0,1,0,0,1,0,1,0] => [6,5,3,2,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,0,1,1,0,1,0,0,1,1,0,0] => [5,6,3,2,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3
[1,0,1,1,0,1,0,1,0,0,1,0] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,0,1,1,0,1,0,1,0,1,0,0] => [5,4,3,2,6,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,0,1,1,0,1,0,1,1,0,0,0] => [4,5,3,2,6,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,0,1,1,0,1,1,0,0,0,1,0] => [6,3,4,2,5,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,0,1,1,0,1,1,0,0,1,0,0] => [5,3,4,2,6,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,0,1,1,0,1,1,0,1,0,0,0] => [4,3,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,0,1,1,0,1,1,1,0,0,0,0] => [3,4,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,0,1,1,1,0,0,0,1,0,1,0] => [6,5,2,3,4,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,0,1,1,1,0,0,0,1,1,0,0] => [5,6,2,3,4,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3
[1,0,1,1,1,0,0,1,0,0,1,0] => [6,4,2,3,5,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,0,1,1,1,0,0,1,0,1,0,0] => [5,4,2,3,6,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,0,1,1,1,0,0,1,1,0,0,0] => [4,5,2,3,6,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1
[1,0,1,1,1,0,1,0,0,0,1,0] => [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,0,1,1,1,0,1,0,0,1,0,0] => [5,3,2,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,0,1,1,1,0,1,0,1,0,0,0] => [4,3,2,5,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,0,1,1,1,0,1,1,0,0,0,0] => [3,4,2,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
>>> Load all 191 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The minimal degree of a vertex of a graph.
Map
dual on components
Description
The dual of the 3-connected planar components of a graph.
Replace each connected component which is 3-connected and planar with its planar dual.
Replace each connected component which is 3-connected and planar with its planar dual.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
Map
to 132-avoiding permutation
Description
Sends a Dyck path to a 132-avoiding permutation.
This bijection is defined in [1, Section 2].
This bijection is defined in [1, Section 2].
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!