Identifier
-
Mp00028:
Dyck paths
—reverse⟶
Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000314: Permutations ⟶ ℤ
Values
[1,0] => [1,0] => [1,0] => [1] => 1
[1,0,1,0] => [1,0,1,0] => [1,1,0,0] => [1,2] => 2
[1,1,0,0] => [1,1,0,0] => [1,0,1,0] => [2,1] => 1
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,2,3] => 3
[1,0,1,1,0,0] => [1,1,0,0,1,0] => [1,1,0,1,0,0] => [2,1,3] => 2
[1,1,0,0,1,0] => [1,0,1,1,0,0] => [1,0,1,1,0,0] => [2,3,1] => 2
[1,1,0,1,0,0] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => [3,1,2] => 1
[1,1,1,0,0,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => [3,2,1] => 1
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,2,3,4] => 4
[1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0] => [2,1,3,4] => 3
[1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [2,3,1,4] => 3
[1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [3,1,2,4] => 2
[1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,0,0] => [3,2,1,4] => 2
[1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => [2,3,4,1] => 3
[1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,0,0] => [3,2,4,1] => 2
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => [4,1,2,3] => 1
[1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [3,4,1,2] => 2
[1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [4,2,1,3] => 1
[1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => [3,4,2,1] => 2
[1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => [4,2,3,1] => 1
[1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => [4,3,1,2] => 1
[1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [4,3,2,1] => 1
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => 5
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,0,0,0,0] => [2,1,3,4,5] => 4
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [2,3,1,4,5] => 4
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => [3,1,2,4,5] => 3
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,0] => [3,2,1,4,5] => 3
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [2,3,4,1,5] => 4
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,0] => [3,2,4,1,5] => 3
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [4,1,2,3,5] => 2
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [3,4,1,2,5] => 3
[1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [4,2,1,3,5] => 2
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => [3,4,2,1,5] => 3
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [4,2,3,1,5] => 2
[1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [4,3,1,2,5] => 2
[1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 2
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => [2,3,4,5,1] => 4
[1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [3,2,4,5,1] => 3
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => [3,4,2,5,1] => 3
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [4,2,3,5,1] => 2
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => [4,3,2,5,1] => 2
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [5,1,2,3,4] => 1
[1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [5,2,1,3,4] => 1
[1,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [3,4,5,1,2] => 3
[1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [4,5,1,2,3] => 2
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [4,3,5,1,2] => 2
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [5,2,3,1,4] => 1
[1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [5,3,1,2,4] => 1
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [4,5,2,1,3] => 2
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [5,3,2,1,4] => 1
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [3,4,5,2,1] => 3
[1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [4,3,5,2,1] => 2
[1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [5,2,3,4,1] => 1
[1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => [4,5,2,3,1] => 2
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [5,3,2,4,1] => 1
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [5,4,1,2,3] => 1
[1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0] => [4,5,3,1,2] => 2
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => [5,3,4,1,2] => 1
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [5,4,2,1,3] => 1
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [4,5,3,2,1] => 2
[1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [5,3,4,2,1] => 1
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [5,4,2,3,1] => 1
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [5,4,3,1,2] => 1
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [5,4,3,2,1] => 1
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,2,3,4,5,6] => 6
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [2,1,3,4,5,6] => 5
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [2,3,1,4,5,6] => 5
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [3,1,2,4,5,6] => 4
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [3,2,1,4,5,6] => 4
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [2,3,4,1,5,6] => 5
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [3,2,4,1,5,6] => 4
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [4,1,2,3,5,6] => 3
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [3,4,1,2,5,6] => 4
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [4,2,1,3,5,6] => 3
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [3,4,2,1,5,6] => 4
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [4,2,3,1,5,6] => 3
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [4,3,1,2,5,6] => 3
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,3,2,1,5,6] => 3
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,3,4,5,1,6] => 5
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [3,2,4,5,1,6] => 4
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [3,4,2,5,1,6] => 4
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [4,2,3,5,1,6] => 3
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [4,3,2,5,1,6] => 3
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [5,1,2,3,4,6] => 2
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [5,2,1,3,4,6] => 2
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [3,4,5,1,2,6] => 4
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [4,5,1,2,3,6] => 3
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [4,3,5,1,2,6] => 3
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [5,2,3,1,4,6] => 2
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [5,3,1,2,4,6] => 2
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [4,5,2,1,3,6] => 3
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [5,3,2,1,4,6] => 2
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [3,4,5,2,1,6] => 4
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [4,3,5,2,1,6] => 3
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [5,2,3,4,1,6] => 2
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [4,5,2,3,1,6] => 3
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [5,3,2,4,1,6] => 2
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [5,4,1,2,3,6] => 2
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [4,5,3,1,2,6] => 3
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [5,3,4,1,2,6] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [5,4,2,1,3,6] => 2
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of left-to-right-maxima of a permutation.
An integer σi in the one-line notation of a permutation σ is a left-to-right-maximum if there does not exist a j<i such that σj>σi.
This is also the number of weak exceedences of a permutation that are not mid-points of a decreasing subsequence of length 3, see [1] for more on the later description.
An integer σi in the one-line notation of a permutation σ is a left-to-right-maximum if there does not exist a j<i such that σj>σi.
This is also the number of weak exceedences of a permutation that are not mid-points of a decreasing subsequence of length 3, see [1] for more on the later description.
Map
inverse zeta map
Description
The inverse zeta map on Dyck paths.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
Map
reverse
Description
The reversal of a Dyck path.
This is the Dyck path obtained by reading the path backwards.
This is the Dyck path obtained by reading the path backwards.
Map
to 132-avoiding permutation
Description
Sends a Dyck path to a 132-avoiding permutation.
This bijection is defined in [1, Section 2].
This bijection is defined in [1, Section 2].
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!