Identifier
-
Mp00080:
Set partitions
—to permutation⟶
Permutations
St000317: Permutations ⟶ ℤ
Values
{{1}} => [1] => 0
{{1,2}} => [2,1] => 0
{{1},{2}} => [1,2] => 0
{{1,2,3}} => [2,3,1] => 0
{{1,2},{3}} => [2,1,3] => 0
{{1,3},{2}} => [3,2,1] => 0
{{1},{2,3}} => [1,3,2] => 0
{{1},{2},{3}} => [1,2,3] => 0
{{1,2,3,4}} => [2,3,4,1] => 0
{{1,2,3},{4}} => [2,3,1,4] => 0
{{1,2,4},{3}} => [2,4,3,1] => 0
{{1,2},{3,4}} => [2,1,4,3] => 0
{{1,2},{3},{4}} => [2,1,3,4] => 0
{{1,3,4},{2}} => [3,2,4,1] => 0
{{1,3},{2,4}} => [3,4,1,2] => 0
{{1,3},{2},{4}} => [3,2,1,4] => 0
{{1,4},{2,3}} => [4,3,2,1] => 0
{{1},{2,3,4}} => [1,3,4,2] => 0
{{1},{2,3},{4}} => [1,3,2,4] => 0
{{1,4},{2},{3}} => [4,2,3,1] => 0
{{1},{2,4},{3}} => [1,4,3,2] => 0
{{1},{2},{3,4}} => [1,2,4,3] => 0
{{1},{2},{3},{4}} => [1,2,3,4] => 0
{{1,2,3,4,5}} => [2,3,4,5,1] => 0
{{1,2,3,4},{5}} => [2,3,4,1,5] => 0
{{1,2,3,5},{4}} => [2,3,5,4,1] => 0
{{1,2,3},{4,5}} => [2,3,1,5,4] => 0
{{1,2,3},{4},{5}} => [2,3,1,4,5] => 0
{{1,2,4,5},{3}} => [2,4,3,5,1] => 0
{{1,2,4},{3,5}} => [2,4,5,1,3] => 0
{{1,2,4},{3},{5}} => [2,4,3,1,5] => 0
{{1,2,5},{3,4}} => [2,5,4,3,1] => 0
{{1,2},{3,4,5}} => [2,1,4,5,3] => 0
{{1,2},{3,4},{5}} => [2,1,4,3,5] => 0
{{1,2,5},{3},{4}} => [2,5,3,4,1] => 0
{{1,2},{3,5},{4}} => [2,1,5,4,3] => 0
{{1,2},{3},{4,5}} => [2,1,3,5,4] => 0
{{1,2},{3},{4},{5}} => [2,1,3,4,5] => 0
{{1,3,4,5},{2}} => [3,2,4,5,1] => 0
{{1,3,4},{2,5}} => [3,5,4,1,2] => 0
{{1,3,4},{2},{5}} => [3,2,4,1,5] => 0
{{1,3,5},{2,4}} => [3,4,5,2,1] => 0
{{1,3},{2,4,5}} => [3,4,1,5,2] => 0
{{1,3},{2,4},{5}} => [3,4,1,2,5] => 0
{{1,3,5},{2},{4}} => [3,2,5,4,1] => 0
{{1,3},{2,5},{4}} => [3,5,1,4,2] => 0
{{1,3},{2},{4,5}} => [3,2,1,5,4] => 0
{{1,3},{2},{4},{5}} => [3,2,1,4,5] => 0
{{1,4,5},{2,3}} => [4,3,2,5,1] => 0
{{1,4},{2,3,5}} => [4,3,5,1,2] => 0
{{1,4},{2,3},{5}} => [4,3,2,1,5] => 0
{{1,5},{2,3,4}} => [5,3,4,2,1] => 0
{{1},{2,3,4,5}} => [1,3,4,5,2] => 0
{{1},{2,3,4},{5}} => [1,3,4,2,5] => 0
{{1,5},{2,3},{4}} => [5,3,2,4,1] => 0
{{1},{2,3,5},{4}} => [1,3,5,4,2] => 0
{{1},{2,3},{4,5}} => [1,3,2,5,4] => 0
{{1},{2,3},{4},{5}} => [1,3,2,4,5] => 0
{{1,4,5},{2},{3}} => [4,2,3,5,1] => 0
{{1,4},{2,5},{3}} => [4,5,3,1,2] => 0
{{1,4},{2},{3,5}} => [4,2,5,1,3] => 0
{{1,4},{2},{3},{5}} => [4,2,3,1,5] => 0
{{1,5},{2,4},{3}} => [5,4,3,2,1] => 0
{{1},{2,4,5},{3}} => [1,4,3,5,2] => 0
{{1},{2,4},{3,5}} => [1,4,5,2,3] => 0
{{1},{2,4},{3},{5}} => [1,4,3,2,5] => 0
{{1,5},{2},{3,4}} => [5,2,4,3,1] => 0
{{1},{2,5},{3,4}} => [1,5,4,3,2] => 0
{{1},{2},{3,4,5}} => [1,2,4,5,3] => 0
{{1},{2},{3,4},{5}} => [1,2,4,3,5] => 0
{{1,5},{2},{3},{4}} => [5,2,3,4,1] => 0
{{1},{2,5},{3},{4}} => [1,5,3,4,2] => 0
{{1},{2},{3,5},{4}} => [1,2,5,4,3] => 0
{{1},{2},{3},{4,5}} => [1,2,3,5,4] => 0
{{1},{2},{3},{4},{5}} => [1,2,3,4,5] => 0
{{1,2,3,4,5,6}} => [2,3,4,5,6,1] => 0
{{1,2,3,4,5},{6}} => [2,3,4,5,1,6] => 0
{{1,2,3,4,6},{5}} => [2,3,4,6,5,1] => 0
{{1,2,3,4},{5,6}} => [2,3,4,1,6,5] => 0
{{1,2,3,4},{5},{6}} => [2,3,4,1,5,6] => 0
{{1,2,3,5,6},{4}} => [2,3,5,4,6,1] => 0
{{1,2,3,5},{4,6}} => [2,3,5,6,1,4] => 0
{{1,2,3,5},{4},{6}} => [2,3,5,4,1,6] => 0
{{1,2,3,6},{4,5}} => [2,3,6,5,4,1] => 0
{{1,2,3},{4,5,6}} => [2,3,1,5,6,4] => 0
{{1,2,3},{4,5},{6}} => [2,3,1,5,4,6] => 0
{{1,2,3,6},{4},{5}} => [2,3,6,4,5,1] => 0
{{1,2,3},{4,6},{5}} => [2,3,1,6,5,4] => 0
{{1,2,3},{4},{5,6}} => [2,3,1,4,6,5] => 0
{{1,2,3},{4},{5},{6}} => [2,3,1,4,5,6] => 0
{{1,2,4,5,6},{3}} => [2,4,3,5,6,1] => 0
{{1,2,4,5},{3,6}} => [2,4,6,5,1,3] => 0
{{1,2,4,5},{3},{6}} => [2,4,3,5,1,6] => 0
{{1,2,4,6},{3,5}} => [2,4,5,6,3,1] => 0
{{1,2,4},{3,5,6}} => [2,4,5,1,6,3] => 0
{{1,2,4},{3,5},{6}} => [2,4,5,1,3,6] => 0
{{1,2,4,6},{3},{5}} => [2,4,3,6,5,1] => 0
{{1,2,4},{3,6},{5}} => [2,4,6,1,5,3] => 0
{{1,2,4},{3},{5,6}} => [2,4,3,1,6,5] => 0
{{1,2,4},{3},{5},{6}} => [2,4,3,1,5,6] => 0
{{1,2,5,6},{3,4}} => [2,5,4,3,6,1] => 0
>>> Load all 278 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The cycle descent number of a permutation.
Let $(i_1,\ldots,i_k)$ be a cycle of a permutation $\pi$ such that $i_1$ is its smallest element. A **cycle descent** of $(i_1,\ldots,i_k)$ is an $i_a$ for $1 \leq a < k$ such that $i_a > i_{a+1}$. The **cycle descent set** of $\pi$ is then the set of descents in all the cycles of $\pi$, and the **cycle descent number** is its cardinality.
Let $(i_1,\ldots,i_k)$ be a cycle of a permutation $\pi$ such that $i_1$ is its smallest element. A **cycle descent** of $(i_1,\ldots,i_k)$ is an $i_a$ for $1 \leq a < k$ such that $i_a > i_{a+1}$. The **cycle descent set** of $\pi$ is then the set of descents in all the cycles of $\pi$, and the **cycle descent number** is its cardinality.
Map
to permutation
Description
Sends the set partition to the permutation obtained by considering the blocks as increasing cycles.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!