edit this statistic or download as text // json
Identifier
  • St000318: Integer partitions ⟶ ℤ (values match St000159The number of distinct parts of the integer partition., St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition.)
Values
=>
Cc0002;cc-rep
[]=>1 [1]=>2 [2]=>2 [1,1]=>2 [3]=>2 [2,1]=>3 [1,1,1]=>2 [4]=>2 [3,1]=>3 [2,2]=>2 [2,1,1]=>3 [1,1,1,1]=>2 [5]=>2 [4,1]=>3 [3,2]=>3 [3,1,1]=>3 [2,2,1]=>3 [2,1,1,1]=>3 [1,1,1,1,1]=>2 [6]=>2 [5,1]=>3 [4,2]=>3 [4,1,1]=>3 [3,3]=>2 [3,2,1]=>4 [3,1,1,1]=>3 [2,2,2]=>2 [2,2,1,1]=>3 [2,1,1,1,1]=>3 [1,1,1,1,1,1]=>2 [7]=>2 [6,1]=>3 [5,2]=>3 [5,1,1]=>3 [4,3]=>3 [4,2,1]=>4 [4,1,1,1]=>3 [3,3,1]=>3 [3,2,2]=>3 [3,2,1,1]=>4 [3,1,1,1,1]=>3 [2,2,2,1]=>3 [2,2,1,1,1]=>3 [2,1,1,1,1,1]=>3 [1,1,1,1,1,1,1]=>2 [8]=>2 [7,1]=>3 [6,2]=>3 [6,1,1]=>3 [5,3]=>3 [5,2,1]=>4 [5,1,1,1]=>3 [4,4]=>2 [4,3,1]=>4 [4,2,2]=>3 [4,2,1,1]=>4 [4,1,1,1,1]=>3 [3,3,2]=>3 [3,3,1,1]=>3 [3,2,2,1]=>4 [3,2,1,1,1]=>4 [3,1,1,1,1,1]=>3 [2,2,2,2]=>2 [2,2,2,1,1]=>3 [2,2,1,1,1,1]=>3 [2,1,1,1,1,1,1]=>3 [1,1,1,1,1,1,1,1]=>2 [9]=>2 [8,1]=>3 [7,2]=>3 [7,1,1]=>3 [6,3]=>3 [6,2,1]=>4 [6,1,1,1]=>3 [5,4]=>3 [5,3,1]=>4 [5,2,2]=>3 [5,2,1,1]=>4 [5,1,1,1,1]=>3 [4,4,1]=>3 [4,3,2]=>4 [4,3,1,1]=>4 [4,2,2,1]=>4 [4,2,1,1,1]=>4 [4,1,1,1,1,1]=>3 [3,3,3]=>2 [3,3,2,1]=>4 [3,3,1,1,1]=>3 [3,2,2,2]=>3 [3,2,2,1,1]=>4 [3,2,1,1,1,1]=>4 [3,1,1,1,1,1,1]=>3 [2,2,2,2,1]=>3 [2,2,2,1,1,1]=>3 [2,2,1,1,1,1,1]=>3 [2,1,1,1,1,1,1,1]=>3 [1,1,1,1,1,1,1,1,1]=>2 [10]=>2 [9,1]=>3 [8,2]=>3 [8,1,1]=>3 [7,3]=>3 [7,2,1]=>4 [7,1,1,1]=>3 [6,4]=>3 [6,3,1]=>4 [6,2,2]=>3 [6,2,1,1]=>4 [6,1,1,1,1]=>3 [5,5]=>2 [5,4,1]=>4 [5,3,2]=>4 [5,3,1,1]=>4 [5,2,2,1]=>4 [5,2,1,1,1]=>4 [5,1,1,1,1,1]=>3 [4,4,2]=>3 [4,4,1,1]=>3 [4,3,3]=>3 [4,3,2,1]=>5 [4,3,1,1,1]=>4 [4,2,2,2]=>3 [4,2,2,1,1]=>4 [4,2,1,1,1,1]=>4 [4,1,1,1,1,1,1]=>3 [3,3,3,1]=>3 [3,3,2,2]=>3 [3,3,2,1,1]=>4 [3,3,1,1,1,1]=>3 [3,2,2,2,1]=>4 [3,2,2,1,1,1]=>4 [3,2,1,1,1,1,1]=>4 [3,1,1,1,1,1,1,1]=>3 [2,2,2,2,2]=>2 [2,2,2,2,1,1]=>3 [2,2,2,1,1,1,1]=>3 [2,2,1,1,1,1,1,1]=>3 [2,1,1,1,1,1,1,1,1]=>3 [1,1,1,1,1,1,1,1,1,1]=>2 [5,4,2]=>4 [5,4,1,1]=>4 [5,3,3]=>3 [5,3,2,1]=>5 [5,3,1,1,1]=>4 [5,2,2,2]=>3 [5,2,2,1,1]=>4 [4,4,3]=>3 [4,4,2,1]=>4 [4,4,1,1,1]=>3 [4,3,3,1]=>4 [4,3,2,2]=>4 [4,3,2,1,1]=>5 [4,2,2,2,1]=>4 [3,3,3,2]=>3 [3,3,3,1,1]=>3 [3,3,2,2,1]=>4 [6,4,2]=>4 [5,4,3]=>4 [5,4,2,1]=>5 [5,4,1,1,1]=>4 [5,3,3,1]=>4 [5,3,2,2]=>4 [5,3,2,1,1]=>5 [5,2,2,2,1]=>4 [4,4,3,1]=>4 [4,4,2,2]=>3 [4,4,2,1,1]=>4 [4,3,3,2]=>4 [4,3,3,1,1]=>4 [4,3,2,2,1]=>5 [3,3,3,2,1]=>4 [3,3,2,2,1,1]=>4 [5,4,3,1]=>5 [5,4,2,2]=>4 [5,4,2,1,1]=>5 [5,3,3,2]=>4 [5,3,3,1,1]=>4 [5,3,2,2,1]=>5 [4,4,3,2]=>4 [4,4,3,1,1]=>4 [4,4,2,2,1]=>4 [4,3,3,2,1]=>5 [5,4,3,2]=>5 [5,4,3,1,1]=>5 [5,4,2,2,1]=>5 [5,3,3,2,1]=>5 [4,4,3,2,1]=>5 [5,4,3,2,1]=>6
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of addable cells of the Ferrers diagram of an integer partition.
Code
def statistic(L):
    return len(L.addable_cells())
Created
Dec 08, 2015 at 16:29 by Christian Stump
Updated
May 14, 2018 at 20:50 by Martin Rubey