Identifier
- St000318: Integer partitions ⟶ ℤ (values match St000159The number of distinct parts of the integer partition., St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition.)
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>2
[2]=>2
[1,1]=>2
[3]=>2
[2,1]=>3
[1,1,1]=>2
[4]=>2
[3,1]=>3
[2,2]=>2
[2,1,1]=>3
[1,1,1,1]=>2
[5]=>2
[4,1]=>3
[3,2]=>3
[3,1,1]=>3
[2,2,1]=>3
[2,1,1,1]=>3
[1,1,1,1,1]=>2
[6]=>2
[5,1]=>3
[4,2]=>3
[4,1,1]=>3
[3,3]=>2
[3,2,1]=>4
[3,1,1,1]=>3
[2,2,2]=>2
[2,2,1,1]=>3
[2,1,1,1,1]=>3
[1,1,1,1,1,1]=>2
[7]=>2
[6,1]=>3
[5,2]=>3
[5,1,1]=>3
[4,3]=>3
[4,2,1]=>4
[4,1,1,1]=>3
[3,3,1]=>3
[3,2,2]=>3
[3,2,1,1]=>4
[3,1,1,1,1]=>3
[2,2,2,1]=>3
[2,2,1,1,1]=>3
[2,1,1,1,1,1]=>3
[1,1,1,1,1,1,1]=>2
[8]=>2
[7,1]=>3
[6,2]=>3
[6,1,1]=>3
[5,3]=>3
[5,2,1]=>4
[5,1,1,1]=>3
[4,4]=>2
[4,3,1]=>4
[4,2,2]=>3
[4,2,1,1]=>4
[4,1,1,1,1]=>3
[3,3,2]=>3
[3,3,1,1]=>3
[3,2,2,1]=>4
[3,2,1,1,1]=>4
[3,1,1,1,1,1]=>3
[2,2,2,2]=>2
[2,2,2,1,1]=>3
[2,2,1,1,1,1]=>3
[2,1,1,1,1,1,1]=>3
[1,1,1,1,1,1,1,1]=>2
[9]=>2
[8,1]=>3
[7,2]=>3
[7,1,1]=>3
[6,3]=>3
[6,2,1]=>4
[6,1,1,1]=>3
[5,4]=>3
[5,3,1]=>4
[5,2,2]=>3
[5,2,1,1]=>4
[5,1,1,1,1]=>3
[4,4,1]=>3
[4,3,2]=>4
[4,3,1,1]=>4
[4,2,2,1]=>4
[4,2,1,1,1]=>4
[4,1,1,1,1,1]=>3
[3,3,3]=>2
[3,3,2,1]=>4
[3,3,1,1,1]=>3
[3,2,2,2]=>3
[3,2,2,1,1]=>4
[3,2,1,1,1,1]=>4
[3,1,1,1,1,1,1]=>3
[2,2,2,2,1]=>3
[2,2,2,1,1,1]=>3
[2,2,1,1,1,1,1]=>3
[2,1,1,1,1,1,1,1]=>3
[1,1,1,1,1,1,1,1,1]=>2
[10]=>2
[9,1]=>3
[8,2]=>3
[8,1,1]=>3
[7,3]=>3
[7,2,1]=>4
[7,1,1,1]=>3
[6,4]=>3
[6,3,1]=>4
[6,2,2]=>3
[6,2,1,1]=>4
[6,1,1,1,1]=>3
[5,5]=>2
[5,4,1]=>4
[5,3,2]=>4
[5,3,1,1]=>4
[5,2,2,1]=>4
[5,2,1,1,1]=>4
[5,1,1,1,1,1]=>3
[4,4,2]=>3
[4,4,1,1]=>3
[4,3,3]=>3
[4,3,2,1]=>5
[4,3,1,1,1]=>4
[4,2,2,2]=>3
[4,2,2,1,1]=>4
[4,2,1,1,1,1]=>4
[4,1,1,1,1,1,1]=>3
[3,3,3,1]=>3
[3,3,2,2]=>3
[3,3,2,1,1]=>4
[3,3,1,1,1,1]=>3
[3,2,2,2,1]=>4
[3,2,2,1,1,1]=>4
[3,2,1,1,1,1,1]=>4
[3,1,1,1,1,1,1,1]=>3
[2,2,2,2,2]=>2
[2,2,2,2,1,1]=>3
[2,2,2,1,1,1,1]=>3
[2,2,1,1,1,1,1,1]=>3
[2,1,1,1,1,1,1,1,1]=>3
[1,1,1,1,1,1,1,1,1,1]=>2
[5,4,2]=>4
[5,4,1,1]=>4
[5,3,3]=>3
[5,3,2,1]=>5
[5,3,1,1,1]=>4
[5,2,2,2]=>3
[5,2,2,1,1]=>4
[4,4,3]=>3
[4,4,2,1]=>4
[4,4,1,1,1]=>3
[4,3,3,1]=>4
[4,3,2,2]=>4
[4,3,2,1,1]=>5
[4,2,2,2,1]=>4
[3,3,3,2]=>3
[3,3,3,1,1]=>3
[3,3,2,2,1]=>4
[6,4,2]=>4
[5,4,3]=>4
[5,4,2,1]=>5
[5,4,1,1,1]=>4
[5,3,3,1]=>4
[5,3,2,2]=>4
[5,3,2,1,1]=>5
[5,2,2,2,1]=>4
[4,4,3,1]=>4
[4,4,2,2]=>3
[4,4,2,1,1]=>4
[4,3,3,2]=>4
[4,3,3,1,1]=>4
[4,3,2,2,1]=>5
[3,3,3,2,1]=>4
[3,3,2,2,1,1]=>4
[5,4,3,1]=>5
[5,4,2,2]=>4
[5,4,2,1,1]=>5
[5,3,3,2]=>4
[5,3,3,1,1]=>4
[5,3,2,2,1]=>5
[4,4,3,2]=>4
[4,4,3,1,1]=>4
[4,4,2,2,1]=>4
[4,3,3,2,1]=>5
[5,4,3,2]=>5
[5,4,3,1,1]=>5
[5,4,2,2,1]=>5
[5,3,3,2,1]=>5
[4,4,3,2,1]=>5
[5,4,3,2,1]=>6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of addable cells of the Ferrers diagram of an integer partition.
Code
def statistic(L): return len(L.addable_cells())
Created
Dec 08, 2015 at 16:29 by Christian Stump
Updated
May 14, 2018 at 20:50 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!