Identifier
Values
[[1],[]] => ([],1) => [1] => 0
[[2],[]] => ([(0,1)],2) => [1] => 0
[[1,1],[]] => ([(0,1)],2) => [1] => 0
[[2,1],[1]] => ([],2) => [2] => 1
[[3],[]] => ([(0,2),(2,1)],3) => [1] => 0
[[2,1],[]] => ([(0,1),(0,2)],3) => [2] => 1
[[3,1],[1]] => ([(1,2)],3) => [3] => 2
[[2,2],[1]] => ([(0,2),(1,2)],3) => [2] => 1
[[3,2],[2]] => ([(1,2)],3) => [3] => 2
[[1,1,1],[]] => ([(0,2),(2,1)],3) => [1] => 0
[[2,2,1],[1,1]] => ([(1,2)],3) => [3] => 2
[[2,1,1],[1]] => ([(1,2)],3) => [3] => 2
[[3,2,1],[2,1]] => ([],3) => [3,3] => 3
[[4],[]] => ([(0,3),(2,1),(3,2)],4) => [1] => 0
[[3,1],[]] => ([(0,2),(0,3),(3,1)],4) => [3] => 2
[[4,1],[1]] => ([(1,2),(2,3)],4) => [4] => 3
[[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => [2] => 1
[[3,2],[1]] => ([(0,3),(1,2),(1,3)],4) => [3,2] => 2
[[4,2],[2]] => ([(0,3),(1,2)],4) => [4,2] => 3
[[2,1,1],[]] => ([(0,2),(0,3),(3,1)],4) => [3] => 2
[[3,2,1],[1,1]] => ([(1,2),(1,3)],4) => [8] => 7
[[3,1,1],[1]] => ([(0,3),(1,2)],4) => [4,2] => 3
[[3,3],[2]] => ([(0,3),(1,2),(2,3)],4) => [3] => 2
[[4,3],[3]] => ([(1,2),(2,3)],4) => [4] => 3
[[2,2,1],[1]] => ([(0,3),(1,2),(1,3)],4) => [3,2] => 2
[[3,3,1],[2,1]] => ([(1,3),(2,3)],4) => [8] => 7
[[3,2,1],[2]] => ([(1,2),(1,3)],4) => [8] => 7
[[2,2,2],[1,1]] => ([(0,3),(1,2),(2,3)],4) => [3] => 2
[[3,3,2],[2,2]] => ([(0,3),(1,2)],4) => [4,2] => 3
[[3,2,2],[2,1]] => ([(1,3),(2,3)],4) => [8] => 7
[[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => [1] => 0
[[2,2,2,1],[1,1,1]] => ([(1,2),(2,3)],4) => [4] => 3
[[2,2,1,1],[1,1]] => ([(0,3),(1,2)],4) => [4,2] => 3
[[2,1,1,1],[1]] => ([(1,2),(2,3)],4) => [4] => 3
[[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [1] => 0
[[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => [4] => 3
[[5,1],[1]] => ([(1,4),(3,2),(4,3)],5) => [5] => 4
[[3,2],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => 2
[[4,2],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => [5,4] => 6
[[5,2],[2]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 7
[[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5) => [4,2] => 3
[[4,1,1],[1]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 7
[[3,3],[1]] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => [3,2] => 2
[[4,3],[2]] => ([(0,3),(1,2),(1,4),(3,4)],5) => [5,4] => 6
[[5,3],[3]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 7
[[2,2,1],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => 2
[[3,3,1],[1,1]] => ([(1,2),(1,3),(2,4),(3,4)],5) => [5,5] => 7
[[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => [4] => 3
[[3,1,1,1],[1]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 7
[[4,4],[3]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [4] => 3
[[5,4],[4]] => ([(1,4),(3,2),(4,3)],5) => [5] => 4
[[2,2,2],[1]] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => [3,2] => 2
[[3,2,2],[2]] => ([(1,2),(1,3),(2,4),(3,4)],5) => [5,5] => 7
[[2,2,1,1],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => [5,4] => 6
[[3,3,3],[2,2]] => ([(0,3),(1,2),(2,4),(3,4)],5) => [4,2] => 3
[[4,4,3],[3,3]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 7
[[2,2,2,1],[1,1]] => ([(0,3),(1,2),(1,4),(3,4)],5) => [5,4] => 6
[[2,2,2,2],[1,1,1]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [4] => 3
[[3,3,3,2],[2,2,2]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 7
[[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [1] => 0
[[2,2,2,2,1],[1,1,1,1]] => ([(1,4),(3,2),(4,3)],5) => [5] => 4
[[2,2,2,1,1],[1,1,1]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 7
[[2,2,1,1,1],[1,1]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 7
[[2,1,1,1,1],[1]] => ([(1,4),(3,2),(4,3)],5) => [5] => 4
[[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [1] => 0
[[5,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => [5] => 4
[[6,1],[1]] => ([(1,5),(3,4),(4,2),(5,3)],6) => [6] => 5
[[4,2],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => [5,4] => 6
[[4,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => [5,5] => 7
[[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [3,2] => 2
[[3,1,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => [5,5] => 7
[[4,4],[2]] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => [5,4] => 6
[[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [3,2] => 2
[[2,2,1,1],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => [5,4] => 6
[[2,1,1,1,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => [5] => 4
[[5,5],[4]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => [5] => 4
[[6,5],[5]] => ([(1,5),(3,4),(4,2),(5,3)],6) => [6] => 5
[[4,4,4],[3,3]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => [5,5] => 7
[[2,2,2,2],[1,1]] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => [5,4] => 6
[[3,3,3,3],[2,2,2]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => [5,5] => 7
[[2,2,2,2,2],[1,1,1,1]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => [5] => 4
[[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [1] => 0
[[2,2,2,2,2,1],[1,1,1,1,1]] => ([(1,5),(3,4),(4,2),(5,3)],6) => [6] => 5
[[2,1,1,1,1,1],[1]] => ([(1,5),(3,4),(4,2),(5,3)],6) => [6] => 5
[[7],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [1] => 0
[[6,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => [6] => 5
[[7,1],[1]] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7) => [7] => 6
[[2,1,1,1,1,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => [6] => 5
[[6,6],[5]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => [6] => 5
[[7,6],[6]] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7) => [7] => 6
[[2,2,2,2,2,2],[1,1,1,1,1]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => [6] => 5
[[1,1,1,1,1,1,1],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [1] => 0
[[2,2,2,2,2,2,1],[1,1,1,1,1,1]] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7) => [7] => 6
[[2,1,1,1,1,1,1],[1]] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7) => [7] => 6
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The spin of an integer partition.
The Ferrers shape of an integer partition $\lambda$ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of $\lambda$ with the vertical lines in the Ferrers shape.
The following example is taken from Appendix B in [1]: Let $\lambda = (5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions
$$(5,5,4,4,2,1), (4,3,3,1), (2,2), (1), ().$$
The first strip $(5,5,4,4,2,1) \setminus (4,3,3,1)$ crosses $4$ times, the second strip $(4,3,3,1) \setminus (2,2)$ crosses $3$ times, the strip $(2,2) \setminus (1)$ crosses $1$ time, and the remaining strip $(1) \setminus ()$ does not cross.
This yields the spin of $(5,5,4,4,2,1)$ to be $4+3+1 = 8$.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
Map
promotion cycle type
Description
The cycle type of promotion on the linear extensions of a poset.