Identifier
Values
[[1],[]] => ([],1) => [1] => 0
[[2],[]] => ([(0,1)],2) => [1] => 0
[[1,1],[]] => ([(0,1)],2) => [1] => 0
[[2,1],[1]] => ([],2) => [2] => 1
[[3],[]] => ([(0,2),(2,1)],3) => [1] => 0
[[2,1],[]] => ([(0,1),(0,2)],3) => [2] => 1
[[3,1],[1]] => ([(1,2)],3) => [3] => 2
[[2,2],[1]] => ([(0,2),(1,2)],3) => [2] => 1
[[3,2],[2]] => ([(1,2)],3) => [3] => 2
[[1,1,1],[]] => ([(0,2),(2,1)],3) => [1] => 0
[[2,2,1],[1,1]] => ([(1,2)],3) => [3] => 2
[[2,1,1],[1]] => ([(1,2)],3) => [3] => 2
[[3,2,1],[2,1]] => ([],3) => [3,3] => 3
[[4],[]] => ([(0,3),(2,1),(3,2)],4) => [1] => 0
[[3,1],[]] => ([(0,2),(0,3),(3,1)],4) => [3] => 2
[[4,1],[1]] => ([(1,2),(2,3)],4) => [4] => 3
[[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => [2] => 1
[[3,2],[1]] => ([(0,3),(1,2),(1,3)],4) => [3,2] => 2
[[4,2],[2]] => ([(0,3),(1,2)],4) => [4,2] => 3
[[2,1,1],[]] => ([(0,2),(0,3),(3,1)],4) => [3] => 2
[[3,2,1],[1,1]] => ([(1,2),(1,3)],4) => [8] => 7
[[3,1,1],[1]] => ([(0,3),(1,2)],4) => [4,2] => 3
[[3,3],[2]] => ([(0,3),(1,2),(2,3)],4) => [3] => 2
[[4,3],[3]] => ([(1,2),(2,3)],4) => [4] => 3
[[2,2,1],[1]] => ([(0,3),(1,2),(1,3)],4) => [3,2] => 2
[[3,3,1],[2,1]] => ([(1,3),(2,3)],4) => [8] => 7
[[3,2,1],[2]] => ([(1,2),(1,3)],4) => [8] => 7
[[2,2,2],[1,1]] => ([(0,3),(1,2),(2,3)],4) => [3] => 2
[[3,3,2],[2,2]] => ([(0,3),(1,2)],4) => [4,2] => 3
[[3,2,2],[2,1]] => ([(1,3),(2,3)],4) => [8] => 7
[[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => [1] => 0
[[2,2,2,1],[1,1,1]] => ([(1,2),(2,3)],4) => [4] => 3
[[2,2,1,1],[1,1]] => ([(0,3),(1,2)],4) => [4,2] => 3
[[2,1,1,1],[1]] => ([(1,2),(2,3)],4) => [4] => 3
[[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [1] => 0
[[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => [4] => 3
[[5,1],[1]] => ([(1,4),(3,2),(4,3)],5) => [5] => 4
[[3,2],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => 2
[[4,2],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => [5,4] => 6
[[5,2],[2]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 7
[[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5) => [4,2] => 3
[[4,1,1],[1]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 7
[[3,3],[1]] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => [3,2] => 2
[[4,3],[2]] => ([(0,3),(1,2),(1,4),(3,4)],5) => [5,4] => 6
[[5,3],[3]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 7
[[2,2,1],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => 2
[[3,3,1],[1,1]] => ([(1,2),(1,3),(2,4),(3,4)],5) => [5,5] => 7
[[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => [4] => 3
[[3,1,1,1],[1]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 7
[[4,4],[3]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [4] => 3
[[5,4],[4]] => ([(1,4),(3,2),(4,3)],5) => [5] => 4
[[2,2,2],[1]] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => [3,2] => 2
[[3,2,2],[2]] => ([(1,2),(1,3),(2,4),(3,4)],5) => [5,5] => 7
[[2,2,1,1],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => [5,4] => 6
[[3,3,3],[2,2]] => ([(0,3),(1,2),(2,4),(3,4)],5) => [4,2] => 3
[[4,4,3],[3,3]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 7
[[2,2,2,1],[1,1]] => ([(0,3),(1,2),(1,4),(3,4)],5) => [5,4] => 6
[[2,2,2,2],[1,1,1]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [4] => 3
[[3,3,3,2],[2,2,2]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 7
[[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [1] => 0
[[2,2,2,2,1],[1,1,1,1]] => ([(1,4),(3,2),(4,3)],5) => [5] => 4
[[2,2,2,1,1],[1,1,1]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 7
[[2,2,1,1,1],[1,1]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 7
[[2,1,1,1,1],[1]] => ([(1,4),(3,2),(4,3)],5) => [5] => 4
[[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [1] => 0
[[5,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => [5] => 4
[[6,1],[1]] => ([(1,5),(3,4),(4,2),(5,3)],6) => [6] => 5
[[4,2],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => [5,4] => 6
[[4,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => [5,5] => 7
[[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [3,2] => 2
[[3,1,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => [5,5] => 7
[[4,4],[2]] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => [5,4] => 6
[[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [3,2] => 2
[[2,2,1,1],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => [5,4] => 6
[[2,1,1,1,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => [5] => 4
[[5,5],[4]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => [5] => 4
[[6,5],[5]] => ([(1,5),(3,4),(4,2),(5,3)],6) => [6] => 5
[[4,4,4],[3,3]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => [5,5] => 7
[[2,2,2,2],[1,1]] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => [5,4] => 6
[[3,3,3,3],[2,2,2]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => [5,5] => 7
[[2,2,2,2,2],[1,1,1,1]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => [5] => 4
[[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [1] => 0
[[2,2,2,2,2,1],[1,1,1,1,1]] => ([(1,5),(3,4),(4,2),(5,3)],6) => [6] => 5
[[2,1,1,1,1,1],[1]] => ([(1,5),(3,4),(4,2),(5,3)],6) => [6] => 5
[[7],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [1] => 0
[[6,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => [6] => 5
[[7,1],[1]] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7) => [7] => 6
[[2,1,1,1,1,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => [6] => 5
[[6,6],[5]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => [6] => 5
[[7,6],[6]] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7) => [7] => 6
[[2,2,2,2,2,2],[1,1,1,1,1]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => [6] => 5
[[1,1,1,1,1,1,1],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [1] => 0
[[2,2,2,2,2,2,1],[1,1,1,1,1,1]] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7) => [7] => 6
[[2,1,1,1,1,1,1],[1]] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7) => [7] => 6
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The dinv adjustment of an integer partition.
The Ferrers shape of an integer partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ can be decomposed into border strips. For $0 \leq j < \lambda_1$ let $n_j$ be the length of the border strip starting at $(\lambda_1-j,0)$.
The dinv adjustment is then defined by
$$\sum_{j:n_j > 0}(\lambda_1-1-j).$$
The following example is taken from Appendix B in [2]: Let $\lambda=(5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions
$$(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),$$
and we obtain $(n_0,\ldots,n_4) = (10,7,0,3,1)$.
The dinv adjustment is thus $4+3+1+0 = 8$.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
Map
promotion cycle type
Description
The cycle type of promotion on the linear extensions of a poset.