Identifier
Values
([(0,1)],2) => ([],1) => ([],1) => 0
([(1,2)],3) => ([],1) => ([],1) => 0
([(0,2),(1,2)],3) => ([(0,1)],2) => ([(0,1)],2) => 0
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 0
([(2,3)],4) => ([],1) => ([],1) => 0
([(1,3),(2,3)],4) => ([(0,1)],2) => ([(0,1)],2) => 0
([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 0
([(0,3),(1,2)],4) => ([],2) => ([],2) => 0
([(0,3),(1,2),(2,3)],4) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 0
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 0
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 0
([(3,4)],5) => ([],1) => ([],1) => 0
([(2,4),(3,4)],5) => ([(0,1)],2) => ([(0,1)],2) => 0
([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 0
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
([(1,4),(2,3)],5) => ([],2) => ([],2) => 0
([(1,4),(2,3),(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 0
([(0,1),(2,4),(3,4)],5) => ([(1,2)],3) => ([(1,2)],3) => 0
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 0
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => 0
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 2
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 0
([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(4,5)],6) => ([],1) => ([],1) => 0
([(3,5),(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 0
([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 0
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([(2,5),(3,4)],6) => ([],2) => ([],2) => 0
([(2,5),(3,4),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 0
([(1,2),(3,5),(4,5)],6) => ([(1,2)],3) => ([(1,2)],3) => 0
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 0
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => 0
([(0,1),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => 0
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 0
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 2
([(0,5),(1,4),(2,3)],6) => ([],3) => ([],3) => 0
([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 0
([(0,1),(2,5),(3,4),(4,5)],6) => ([(1,3),(2,3)],4) => ([(1,3),(2,3)],4) => 0
([(1,2),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,5),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,5),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) => 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => 0
>>> Load all 239 entries. <<<
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 0
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,2),(1,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 0
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => 0
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => 0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,4),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,4),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(5,6)],7) => ([],1) => ([],1) => 0
([(4,6),(5,6)],7) => ([(0,1)],2) => ([(0,1)],2) => 0
([(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 0
([(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(3,6),(4,5)],7) => ([],2) => ([],2) => 0
([(3,6),(4,5),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 0
([(2,3),(4,6),(5,6)],7) => ([(1,2)],3) => ([(1,2)],3) => 0
([(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 0
([(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => 0
([(1,2),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => 0
([(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 0
([(1,6),(2,6),(3,5),(4,5)],7) => ([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => 0
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 0
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(2,3),(2,4),(3,4)],5) => 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 0
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 0
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) => 0
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 0
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 2
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(1,6),(2,5),(3,4)],7) => ([],3) => ([],3) => 0
([(2,6),(3,5),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 0
([(1,2),(3,6),(4,5),(5,6)],7) => ([(1,3),(2,3)],4) => ([(1,3),(2,3)],4) => 0
([(0,3),(1,2),(4,6),(5,6)],7) => ([(2,3)],4) => ([(2,3)],4) => 0
([(2,3),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => 0
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => 0
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 0
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => 0
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => ([(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => 0
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,5),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,5),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 0
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => 0
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => ([(0,1),(2,4),(3,4)],5) => ([(0,1),(2,4),(3,4)],5) => 0
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(2,3),(2,4),(3,4)],5) => 0
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 0
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => 0
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 0
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 0
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => 0
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 0
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) => 0
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => ([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => 0
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => ([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => 0
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => 0
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 0
([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 0
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,1),(0,3),(1,2),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,3),(1,2),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 0
([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => 0
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => 0
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => 0
([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(1,5),(2,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,5),(2,4),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => ([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 0
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7) => ([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 0
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => ([(1,4),(2,3),(3,4)],5) => 0
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => ([(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(3,4)],5) => 0
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 0
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 0
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => ([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => 0
([(0,6),(1,4),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,5),(1,3),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,3),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => 0
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => 0
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 0
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => 0
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7) => ([(0,5),(1,3),(1,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,3),(1,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 0
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7) => ([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7) => 0
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 0
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => 0
([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,4),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,4),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 0
([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7) => ([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7) => ([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7) => 0
search for individual values
searching the database for the individual values of this statistic
Description
The minimal crossing number of a graph.
A drawing of a graph $G$ is a drawing in $\mathbb{R}^2$ such that
  • the vertices of $G$ are distinct points,
  • the edges of $G$ are simple curves joining their endpoints,
  • no edge passes through a vertex, and
  • no three edges cross in a common point.
The minimal crossing number of $G$ is then the minimal number of crossings of edges in a drawing of $G$.
In particular, a graph is planar if and only if its minimal crossing number is $0$.
It is moreover conjectured that the crossing number of the complete graph $K_n$ [1] is
$$\frac{1}{4}\lfloor \frac{n}{2} \rfloor\lfloor \frac{n-1}{2} \rfloor\lfloor \frac{n-2}{2} \rfloor\lfloor \frac{n-3}{2} \rfloor,$$
and the crossing number of the complete bipartite graph $K_{n,m}$ [2] is
$$\lfloor \frac{n}{2} \rfloor\lfloor \frac{n-1}{2} \rfloor\lfloor \frac{m}{2} \rfloor\lfloor \frac{m-1}{2} \rfloor.$$
A general algorithm to compute the crossing number is e.g. given in [3].
This statistics data was provided by Markus Chimani [6].
Map
line graph
Description
The line graph of a graph.
Let $G$ be a graph with edge set $E$. Then its line graph is the graph with vertex set $E$, such that two vertices $e$ and $f$ are adjacent if and only if they are incident to a common vertex in $G$.
Map
dual on components
Description
The dual of the 3-connected planar components of a graph.
Replace each connected component which is 3-connected and planar with its planar dual.