Identifier
-
Mp00023:
Dyck paths
—to non-crossing permutation⟶
Permutations
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
St000325: Permutations ⟶ ℤ (values match St000021The number of descents of a permutation., St000470The number of runs in a permutation.)
Values
[1,0] => [1] => [1] => 1
[1,0,1,0] => [1,2] => [1,2] => 1
[1,1,0,0] => [2,1] => [2,1] => 2
[1,0,1,0,1,0] => [1,2,3] => [1,2,3] => 1
[1,0,1,1,0,0] => [1,3,2] => [3,1,2] => 2
[1,1,0,0,1,0] => [2,1,3] => [2,1,3] => 2
[1,1,0,1,0,0] => [2,3,1] => [1,3,2] => 2
[1,1,1,0,0,0] => [3,2,1] => [3,2,1] => 3
[1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,2,3,4] => 1
[1,0,1,0,1,1,0,0] => [1,2,4,3] => [4,1,2,3] => 2
[1,0,1,1,0,0,1,0] => [1,3,2,4] => [3,1,2,4] => 2
[1,0,1,1,0,1,0,0] => [1,3,4,2] => [2,4,1,3] => 2
[1,0,1,1,1,0,0,0] => [1,4,3,2] => [4,3,1,2] => 3
[1,1,0,0,1,0,1,0] => [2,1,3,4] => [2,1,3,4] => 2
[1,1,0,0,1,1,0,0] => [2,1,4,3] => [1,4,2,3] => 2
[1,1,0,1,0,0,1,0] => [2,3,1,4] => [1,3,2,4] => 2
[1,1,0,1,0,1,0,0] => [2,3,4,1] => [1,2,4,3] => 2
[1,1,0,1,1,0,0,0] => [2,4,3,1] => [4,1,3,2] => 3
[1,1,1,0,0,0,1,0] => [3,2,1,4] => [3,2,1,4] => 3
[1,1,1,0,0,1,0,0] => [3,2,4,1] => [2,1,4,3] => 3
[1,1,1,0,1,0,0,0] => [4,2,3,1] => [2,4,3,1] => 3
[1,1,1,1,0,0,0,0] => [4,3,2,1] => [4,3,2,1] => 4
[1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 1
[1,0,1,0,1,0,1,1,0,0] => [1,2,3,5,4] => [5,1,2,3,4] => 2
[1,0,1,0,1,1,0,0,1,0] => [1,2,4,3,5] => [4,1,2,3,5] => 2
[1,0,1,0,1,1,0,1,0,0] => [1,2,4,5,3] => [3,5,1,2,4] => 2
[1,0,1,0,1,1,1,0,0,0] => [1,2,5,4,3] => [5,4,1,2,3] => 3
[1,0,1,1,0,0,1,0,1,0] => [1,3,2,4,5] => [3,1,2,4,5] => 2
[1,0,1,1,0,0,1,1,0,0] => [1,3,2,5,4] => [2,5,1,3,4] => 2
[1,0,1,1,0,1,0,0,1,0] => [1,3,4,2,5] => [2,4,1,3,5] => 2
[1,0,1,1,0,1,0,1,0,0] => [1,3,4,5,2] => [2,3,5,1,4] => 2
[1,0,1,1,0,1,1,0,0,0] => [1,3,5,4,2] => [5,2,4,1,3] => 3
[1,0,1,1,1,0,0,0,1,0] => [1,4,3,2,5] => [4,3,1,2,5] => 3
[1,0,1,1,1,0,0,1,0,0] => [1,4,3,5,2] => [3,2,5,1,4] => 3
[1,0,1,1,1,0,1,0,0,0] => [1,5,3,4,2] => [3,5,4,1,2] => 3
[1,0,1,1,1,1,0,0,0,0] => [1,5,4,3,2] => [5,4,3,1,2] => 4
[1,1,0,0,1,0,1,0,1,0] => [2,1,3,4,5] => [2,1,3,4,5] => 2
[1,1,0,0,1,0,1,1,0,0] => [2,1,3,5,4] => [1,5,2,3,4] => 2
[1,1,0,0,1,1,0,0,1,0] => [2,1,4,3,5] => [1,4,2,3,5] => 2
[1,1,0,0,1,1,0,1,0,0] => [2,1,4,5,3] => [1,3,5,2,4] => 2
[1,1,0,0,1,1,1,0,0,0] => [2,1,5,4,3] => [5,1,4,2,3] => 3
[1,1,0,1,0,0,1,0,1,0] => [2,3,1,4,5] => [1,3,2,4,5] => 2
[1,1,0,1,0,0,1,1,0,0] => [2,3,1,5,4] => [1,2,5,3,4] => 2
[1,1,0,1,0,1,0,0,1,0] => [2,3,4,1,5] => [1,2,4,3,5] => 2
[1,1,0,1,0,1,0,1,0,0] => [2,3,4,5,1] => [1,2,3,5,4] => 2
[1,1,0,1,0,1,1,0,0,0] => [2,3,5,4,1] => [5,1,2,4,3] => 3
[1,1,0,1,1,0,0,0,1,0] => [2,4,3,1,5] => [4,1,3,2,5] => 3
[1,1,0,1,1,0,0,1,0,0] => [2,4,3,5,1] => [3,1,2,5,4] => 3
[1,1,0,1,1,0,1,0,0,0] => [2,5,3,4,1] => [3,5,1,4,2] => 3
[1,1,0,1,1,1,0,0,0,0] => [2,5,4,3,1] => [5,4,1,3,2] => 4
[1,1,1,0,0,0,1,0,1,0] => [3,2,1,4,5] => [3,2,1,4,5] => 3
[1,1,1,0,0,0,1,1,0,0] => [3,2,1,5,4] => [2,1,5,3,4] => 3
[1,1,1,0,0,1,0,0,1,0] => [3,2,4,1,5] => [2,1,4,3,5] => 3
[1,1,1,0,0,1,0,1,0,0] => [3,2,4,5,1] => [2,1,3,5,4] => 3
[1,1,1,0,0,1,1,0,0,0] => [3,2,5,4,1] => [1,5,2,4,3] => 3
[1,1,1,0,1,0,0,0,1,0] => [4,2,3,1,5] => [2,4,3,1,5] => 3
[1,1,1,0,1,0,0,1,0,0] => [4,2,3,5,1] => [2,3,1,5,4] => 3
[1,1,1,0,1,0,1,0,0,0] => [5,2,3,4,1] => [2,3,5,4,1] => 3
[1,1,1,0,1,1,0,0,0,0] => [5,2,4,3,1] => [5,2,4,3,1] => 4
[1,1,1,1,0,0,0,0,1,0] => [4,3,2,1,5] => [4,3,2,1,5] => 4
[1,1,1,1,0,0,0,1,0,0] => [4,3,2,5,1] => [3,2,1,5,4] => 4
[1,1,1,1,0,0,1,0,0,0] => [5,3,2,4,1] => [3,2,5,4,1] => 4
[1,1,1,1,0,1,0,0,0,0] => [5,3,4,2,1] => [2,5,4,3,1] => 4
[1,1,1,1,1,0,0,0,0,0] => [5,4,3,2,1] => [5,4,3,2,1] => 5
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 1
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,2,3,4,6,5] => [6,1,2,3,4,5] => 2
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => [5,1,2,3,4,6] => 2
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,2,3,5,6,4] => [4,6,1,2,3,5] => 2
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,2,3,6,5,4] => [6,5,1,2,3,4] => 3
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => [4,1,2,3,5,6] => 2
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,2,4,3,6,5] => [3,6,1,2,4,5] => 2
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,2,4,5,3,6] => [3,5,1,2,4,6] => 2
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,2,4,5,6,3] => [3,4,6,1,2,5] => 2
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,2,4,6,5,3] => [6,3,5,1,2,4] => 3
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,5,4,3,6] => [5,4,1,2,3,6] => 3
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,2,5,4,6,3] => [4,3,6,1,2,5] => 3
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,2,6,4,5,3] => [4,6,5,1,2,3] => 3
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,2,6,5,4,3] => [6,5,4,1,2,3] => 4
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => [3,1,2,4,5,6] => 2
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,3,2,4,6,5] => [2,6,1,3,4,5] => 2
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4,6] => [2,5,1,3,4,6] => 2
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,3,2,5,6,4] => [2,4,6,1,3,5] => 2
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,3,2,6,5,4] => [6,2,5,1,3,4] => 3
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,3,4,2,5,6] => [2,4,1,3,5,6] => 2
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,3,4,2,6,5] => [2,3,6,1,4,5] => 2
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,3,4,5,2,6] => [2,3,5,1,4,6] => 2
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,3,4,5,6,2] => [2,3,4,6,1,5] => 2
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,3,4,6,5,2] => [6,2,3,5,1,4] => 3
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,3,5,4,2,6] => [5,2,4,1,3,6] => 3
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,3,5,4,6,2] => [4,2,3,6,1,5] => 3
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,3,6,4,5,2] => [4,6,2,5,1,3] => 3
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,3,6,5,4,2] => [6,5,2,4,1,3] => 4
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,4,3,2,5,6] => [4,3,1,2,5,6] => 3
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,4,3,2,6,5] => [3,2,6,1,4,5] => 3
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,4,3,5,2,6] => [3,2,5,1,4,6] => 3
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,4,3,5,6,2] => [3,2,4,6,1,5] => 3
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,4,3,6,5,2] => [2,6,3,5,1,4] => 3
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,5,3,4,2,6] => [3,5,4,1,2,6] => 3
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,5,3,4,6,2] => [3,4,2,6,1,5] => 3
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,6,3,4,5,2] => [3,4,6,5,1,2] => 3
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,6,3,5,4,2] => [6,3,5,4,1,2] => 4
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The width of the tree associated to a permutation.
A permutation can be mapped to a rooted tree with vertices $\{0,1,2,\ldots,n\}$ and root $0$ in the following way. Entries of the permutations are inserted one after the other, each child is larger than its parent and the children are in strict order from left to right. Details of the construction are found in [1].
The width of the tree is given by the number of leaves of this tree.
Note that, due to the construction of this tree, the width of the tree is always one more than the number of descents St000021The number of descents of a permutation.. This also matches the number of runs in a permutation St000470The number of runs in a permutation..
See also St000308The height of the tree associated to a permutation. for the height of this tree.
A permutation can be mapped to a rooted tree with vertices $\{0,1,2,\ldots,n\}$ and root $0$ in the following way. Entries of the permutations are inserted one after the other, each child is larger than its parent and the children are in strict order from left to right. Details of the construction are found in [1].
The width of the tree is given by the number of leaves of this tree.
Note that, due to the construction of this tree, the width of the tree is always one more than the number of descents St000021The number of descents of a permutation.. This also matches the number of runs in a permutation St000470The number of runs in a permutation..
See also St000308The height of the tree associated to a permutation. for the height of this tree.
Map
to non-crossing permutation
Description
Sends a Dyck path $D$ with valley at positions $\{(i_1,j_1),\ldots,(i_k,j_k)\}$ to the unique non-crossing permutation $\pi$ having descents $\{i_1,\ldots,i_k\}$ and whose inverse has descents $\{j_1,\ldots,j_k\}$.
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to $n(n-1)$ minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to $n(n-1)$ minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
Map
Lehmer-code to major-code bijection
Description
Sends a permutation to the unique permutation such that the Lehmer code is sent to the major code.
The Lehmer code encodes the inversions of a permutation and the major code encodes its major index. In particular, the number of inversions of a permutation equals the major index of its image under this map.
* The Lehmer code of a permutation $\sigma$ is given by $L(\sigma) = l_1 \ldots l_n$ with $l_i = \# \{ j > i : \sigma_j < \sigma_i \}$. In particular, $l_i$ is the number of boxes in the $i$-th column of the Rothe diagram. For example, the Lehmer code of $\sigma = [4,3,1,5,2]$ is $32010$. The Lehmer code $L : \mathfrak{S}_n\ \tilde\longrightarrow\ S_n$ is a bijection between permutations of size $n$ and sequences $l_1\ldots l_n \in \mathbf{N}^n$ with $l_i \leq i$.
* The major code $M(\sigma)$ of a permutation $\sigma \in \mathfrak{S}_n$ is a way to encode a permutation as a sequence $m_1 m_2 \ldots m_n$ with $m_i \geq i$. To define $m_i$, let $\operatorname{del}_i(\sigma)$ be the normalized permutation obtained by removing all $\sigma_j < i$ from the one-line notation of $\sigma$. The $i$-th index is then given by
$$m_i = \operatorname{maj}(\operatorname{del}_i(\sigma)) - \operatorname{maj}(\operatorname{del}_{i-1}(\sigma)).$$
For example, the permutation $[9,3,5,7,2,1,4,6,8]$ has major code $[5, 0, 1, 0, 1, 2, 0, 1, 0]$ since
$$\operatorname{maj}([8,2,4,6,1,3,5,7]) = 5, \quad \operatorname{maj}([7,1,3,5,2,4,6]) = 5, \quad \operatorname{maj}([6,2,4,1,3,5]) = 4,$$
$$\operatorname{maj}([5,1,3,2,4]) = 4, \quad \operatorname{maj}([4,2,1,3]) = 3, \quad \operatorname{maj}([3,1,2]) = 1, \quad \operatorname{maj}([2,1]) = 1.$$
Observe that the sum of the major code of $\sigma$ equals the major index of $\sigma$.
The Lehmer code encodes the inversions of a permutation and the major code encodes its major index. In particular, the number of inversions of a permutation equals the major index of its image under this map.
* The Lehmer code of a permutation $\sigma$ is given by $L(\sigma) = l_1 \ldots l_n$ with $l_i = \# \{ j > i : \sigma_j < \sigma_i \}$. In particular, $l_i$ is the number of boxes in the $i$-th column of the Rothe diagram. For example, the Lehmer code of $\sigma = [4,3,1,5,2]$ is $32010$. The Lehmer code $L : \mathfrak{S}_n\ \tilde\longrightarrow\ S_n$ is a bijection between permutations of size $n$ and sequences $l_1\ldots l_n \in \mathbf{N}^n$ with $l_i \leq i$.
* The major code $M(\sigma)$ of a permutation $\sigma \in \mathfrak{S}_n$ is a way to encode a permutation as a sequence $m_1 m_2 \ldots m_n$ with $m_i \geq i$. To define $m_i$, let $\operatorname{del}_i(\sigma)$ be the normalized permutation obtained by removing all $\sigma_j < i$ from the one-line notation of $\sigma$. The $i$-th index is then given by
$$m_i = \operatorname{maj}(\operatorname{del}_i(\sigma)) - \operatorname{maj}(\operatorname{del}_{i-1}(\sigma)).$$
For example, the permutation $[9,3,5,7,2,1,4,6,8]$ has major code $[5, 0, 1, 0, 1, 2, 0, 1, 0]$ since
$$\operatorname{maj}([8,2,4,6,1,3,5,7]) = 5, \quad \operatorname{maj}([7,1,3,5,2,4,6]) = 5, \quad \operatorname{maj}([6,2,4,1,3,5]) = 4,$$
$$\operatorname{maj}([5,1,3,2,4]) = 4, \quad \operatorname{maj}([4,2,1,3]) = 3, \quad \operatorname{maj}([3,1,2]) = 1, \quad \operatorname{maj}([2,1]) = 1.$$
Observe that the sum of the major code of $\sigma$ equals the major index of $\sigma$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!