Identifier
-
Mp00111:
Graphs
—complement⟶
Graphs
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000329: Dyck paths ⟶ ℤ
Values
([],1) => ([],1) => [1] => [1,0] => 0
([],2) => ([(0,1)],2) => [2] => [1,0,1,0] => 0
([(0,1)],2) => ([],2) => [1,1] => [1,1,0,0] => 1
([],3) => ([(0,1),(0,2),(1,2)],3) => [3] => [1,0,1,0,1,0] => 0
([(1,2)],3) => ([(0,2),(1,2)],3) => [2,2] => [1,1,1,0,0,0] => 1
([(0,2),(1,2)],3) => ([(1,2)],3) => [2,1] => [1,0,1,1,0,0] => 1
([(0,1),(0,2),(1,2)],3) => ([],3) => [1,1,1] => [1,1,0,1,0,0] => 2
([],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,0,1,0,1,0,1,0] => 0
([(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,3] => [1,1,1,0,1,0,0,0] => 1
([(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => [3,2] => [1,0,1,1,1,0,0,0] => 1
([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => [3,1] => [1,0,1,0,1,1,0,0] => 1
([(0,3),(1,2)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => 3
([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => [2,2,2] => [1,1,1,1,0,0,0,0] => 2
([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => [2,2,2] => [1,1,1,1,0,0,0,0] => 2
([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,3),(2,3)],4) => [2,2,1] => [1,1,1,0,0,1,0,0] => 2
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(1,2)],4) => [2,2] => [1,1,1,0,0,0] => 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(2,3)],4) => [2,1,1] => [1,0,1,1,0,1,0,0] => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => 3
([],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [1,0,1,0,1,0,1,0,1,0] => 0
([(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,4] => [1,1,1,0,1,0,1,0,0,0] => 1
([(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,3] => [1,0,1,1,1,0,1,0,0,0] => 1
([(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,2] => [1,0,1,0,1,1,1,0,0,0] => 1
([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => 1
([(1,4),(2,3)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [3,3,3,3] => [1,1,1,1,1,1,0,0,0,0,0,0] => 3
([(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,3] => [1,1,1,1,1,0,0,0,0,0] => 2
([(0,1),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => 3
([(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,3] => [1,1,1,1,1,0,0,0,0,0] => 2
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [3,3,2] => [1,1,1,0,1,1,0,0,0,0] => 2
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,2] => [1,1,1,0,1,1,0,0,0,0] => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => 2
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [1,1,1,0,1,0,0,0] => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => [3,2,1] => [1,0,1,1,1,0,0,1,0,0] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [1,0,1,1,1,0,0,0] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => 2
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => 4
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => [2,2,2,2,1] => [1,1,1,1,0,1,0,0,0,1,0,0] => 4
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => 4
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(2,3),(3,4)],5) => [2,2,2,1] => [1,1,1,1,0,0,0,1,0,0] => 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => [2,2,2,1] => [1,1,1,1,0,0,0,1,0,0] => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => [2,2,1,1] => [1,1,1,0,0,1,0,1,0,0] => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(2,4),(3,4)],5) => [2,2,2] => [1,1,1,1,0,0,0,0] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3)],5) => [2,2,1] => [1,1,1,0,0,1,0,0] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(3,4)],5) => [2,1,1,1] => [1,0,1,1,0,1,0,1,0,0] => 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([],5) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => 4
([],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
([(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,5] => [1,1,1,0,1,0,1,0,1,0,0,0] => 1
([(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,4] => [1,0,1,1,1,0,1,0,1,0,0,0] => 1
([(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => 1
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => 1
([(2,5),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4,4] => [1,1,1,1,1,0,1,0,0,0,0,0] => 2
([(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4,4] => [1,1,1,1,1,0,1,0,0,0,0,0] => 2
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4,3] => [1,1,1,0,1,1,1,0,0,0,0,0] => 2
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4,3] => [1,1,1,0,1,1,1,0,0,0,0,0] => 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4,2] => [1,1,1,0,1,0,1,1,0,0,0,0] => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4,2] => [1,1,1,0,1,0,1,1,0,0,0,0] => 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4,1] => [1,1,1,0,1,0,1,0,0,1,0,0] => 2
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4] => [1,1,1,0,1,0,1,0,0,0] => 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,3] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,3] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,3] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,3] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,2] => [1,0,1,1,1,0,1,1,0,0,0,0] => 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,2] => [1,0,1,1,1,0,1,1,0,0,0,0] => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,2] => [1,0,1,1,1,0,1,1,0,0,0,0] => 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,1] => [1,0,1,1,1,0,1,0,0,1,0,0] => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3] => [1,0,1,1,1,0,1,0,0,0] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,1] => [1,0,1,0,1,1,1,0,0,1,0,0] => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [1,0,1,0,1,1,1,0,0,0] => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,3] => [1,1,1,1,1,1,0,0,0,0,0,0] => 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,3,3,3] => [1,1,1,1,1,1,0,0,0,0,0,0] => 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,3] => [1,1,1,1,1,1,0,0,0,0,0,0] => 3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,3,3,3] => [1,1,1,1,1,1,0,0,0,0,0,0] => 3
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,3,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0] => 3
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,3,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0] => 3
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0] => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,1] => [1,1,1,1,1,0,0,0,0,1,0,0] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [3,3,3,3] => [1,1,1,1,1,1,0,0,0,0,0,0] => 3
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0] => 3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,3] => [1,1,1,1,1,1,0,0,0,0,0,0] => 3
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0] => 3
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0] => 3
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,1] => [1,1,1,1,1,0,0,0,0,1,0,0] => 3
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => 3
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => 3
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,3,2,1] => [1,1,1,0,1,1,0,0,0,1,0,0] => 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => 3
>>> Load all 252 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1.
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
Map
complement
Description
The complement of a graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
Map
clique sizes
Description
The integer partition of the sizes of the maximal cliques of a graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!