Identifier
-
Mp00044:
Integer partitions
—conjugate⟶
Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000330: Standard tableaux ⟶ ℤ
Values
[1] => [1] => [[1]] => [[1]] => 0
[2] => [1,1] => [[1],[2]] => [[1,2]] => 0
[1,1] => [2] => [[1,2]] => [[1],[2]] => 1
[3] => [1,1,1] => [[1],[2],[3]] => [[1,2,3]] => 0
[2,1] => [2,1] => [[1,3],[2]] => [[1,2],[3]] => 2
[1,1,1] => [3] => [[1,2,3]] => [[1],[2],[3]] => 3
[4] => [1,1,1,1] => [[1],[2],[3],[4]] => [[1,2,3,4]] => 0
[3,1] => [2,1,1] => [[1,4],[2],[3]] => [[1,2,3],[4]] => 3
[2,2] => [2,2] => [[1,2],[3,4]] => [[1,3],[2,4]] => 4
[2,1,1] => [3,1] => [[1,3,4],[2]] => [[1,2],[3],[4]] => 5
[1,1,1,1] => [4] => [[1,2,3,4]] => [[1],[2],[3],[4]] => 6
[5] => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [[1,2,3,4,5]] => 0
[4,1] => [2,1,1,1] => [[1,5],[2],[3],[4]] => [[1,2,3,4],[5]] => 4
[3,2] => [2,2,1] => [[1,3],[2,5],[4]] => [[1,2,4],[3,5]] => 6
[3,1,1] => [3,1,1] => [[1,4,5],[2],[3]] => [[1,2,3],[4],[5]] => 7
[2,2,1] => [3,2] => [[1,2,5],[3,4]] => [[1,3],[2,4],[5]] => 8
[2,1,1,1] => [4,1] => [[1,3,4,5],[2]] => [[1,2],[3],[4],[5]] => 9
[1,1,1,1,1] => [5] => [[1,2,3,4,5]] => [[1],[2],[3],[4],[5]] => 10
[6] => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [[1,2,3,4,5,6]] => 0
[5,1] => [2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => [[1,2,3,4,5],[6]] => 5
[4,2] => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [[1,2,3,5],[4,6]] => 8
[4,1,1] => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [[1,2,3,4],[5],[6]] => 9
[3,3] => [2,2,2] => [[1,2],[3,4],[5,6]] => [[1,3,5],[2,4,6]] => 9
[3,2,1] => [3,2,1] => [[1,3,6],[2,5],[4]] => [[1,2,4],[3,5],[6]] => 11
[3,1,1,1] => [4,1,1] => [[1,4,5,6],[2],[3]] => [[1,2,3],[4],[5],[6]] => 12
[2,2,2] => [3,3] => [[1,2,3],[4,5,6]] => [[1,4],[2,5],[3,6]] => 12
[2,2,1,1] => [4,2] => [[1,2,5,6],[3,4]] => [[1,3],[2,4],[5],[6]] => 13
[2,1,1,1,1] => [5,1] => [[1,3,4,5,6],[2]] => [[1,2],[3],[4],[5],[6]] => 14
[1,1,1,1,1,1] => [6] => [[1,2,3,4,5,6]] => [[1],[2],[3],[4],[5],[6]] => 15
[7] => [1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [[1,2,3,4,5,6,7]] => 0
[6,1] => [2,1,1,1,1,1] => [[1,7],[2],[3],[4],[5],[6]] => [[1,2,3,4,5,6],[7]] => 6
[5,2] => [2,2,1,1,1] => [[1,5],[2,7],[3],[4],[6]] => [[1,2,3,4,6],[5,7]] => 10
[5,1,1] => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => [[1,2,3,4,5],[6],[7]] => 11
[4,3] => [2,2,2,1] => [[1,3],[2,5],[4,7],[6]] => [[1,2,4,6],[3,5,7]] => 12
[4,2,1] => [3,2,1,1] => [[1,4,7],[2,6],[3],[5]] => [[1,2,3,5],[4,6],[7]] => 14
[4,1,1,1] => [4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => [[1,2,3,4],[5],[6],[7]] => 15
[3,3,1] => [3,2,2] => [[1,2,7],[3,4],[5,6]] => [[1,3,5],[2,4,6],[7]] => 15
[3,2,2] => [3,3,1] => [[1,3,4],[2,6,7],[5]] => [[1,2,5],[3,6],[4,7]] => 16
[3,2,1,1] => [4,2,1] => [[1,3,6,7],[2,5],[4]] => [[1,2,4],[3,5],[6],[7]] => 17
[3,1,1,1,1] => [5,1,1] => [[1,4,5,6,7],[2],[3]] => [[1,2,3],[4],[5],[6],[7]] => 18
[2,2,2,1] => [4,3] => [[1,2,3,7],[4,5,6]] => [[1,4],[2,5],[3,6],[7]] => 18
[2,2,1,1,1] => [5,2] => [[1,2,5,6,7],[3,4]] => [[1,3],[2,4],[5],[6],[7]] => 19
[2,1,1,1,1,1] => [6,1] => [[1,3,4,5,6,7],[2]] => [[1,2],[3],[4],[5],[6],[7]] => 20
[1,1,1,1,1,1,1] => [7] => [[1,2,3,4,5,6,7]] => [[1],[2],[3],[4],[5],[6],[7]] => 21
[8] => [1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => [[1,2,3,4,5,6,7,8]] => 0
[7,1] => [2,1,1,1,1,1,1] => [[1,8],[2],[3],[4],[5],[6],[7]] => [[1,2,3,4,5,6,7],[8]] => 7
[6,2] => [2,2,1,1,1,1] => [[1,6],[2,8],[3],[4],[5],[7]] => [[1,2,3,4,5,7],[6,8]] => 12
[6,1,1] => [3,1,1,1,1,1] => [[1,7,8],[2],[3],[4],[5],[6]] => [[1,2,3,4,5,6],[7],[8]] => 13
[5,3] => [2,2,2,1,1] => [[1,4],[2,6],[3,8],[5],[7]] => [[1,2,3,5,7],[4,6,8]] => 15
[5,2,1] => [3,2,1,1,1] => [[1,5,8],[2,7],[3],[4],[6]] => [[1,2,3,4,6],[5,7],[8]] => 17
[5,1,1,1] => [4,1,1,1,1] => [[1,6,7,8],[2],[3],[4],[5]] => [[1,2,3,4,5],[6],[7],[8]] => 18
[4,4] => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [[1,3,5,7],[2,4,6,8]] => 16
[4,3,1] => [3,2,2,1] => [[1,3,8],[2,5],[4,7],[6]] => [[1,2,4,6],[3,5,7],[8]] => 19
[4,2,2] => [3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => [[1,2,3,6],[4,7],[5,8]] => 20
[4,2,1,1] => [4,2,1,1] => [[1,4,7,8],[2,6],[3],[5]] => [[1,2,3,5],[4,6],[7],[8]] => 21
[4,1,1,1,1] => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => [[1,2,3,4],[5],[6],[7],[8]] => 22
[3,3,2] => [3,3,2] => [[1,2,5],[3,4,8],[6,7]] => [[1,3,6],[2,4,7],[5,8]] => 21
[3,3,1,1] => [4,2,2] => [[1,2,7,8],[3,4],[5,6]] => [[1,3,5],[2,4,6],[7],[8]] => 22
[3,2,2,1] => [4,3,1] => [[1,3,4,8],[2,6,7],[5]] => [[1,2,5],[3,6],[4,7],[8]] => 23
[3,2,1,1,1] => [5,2,1] => [[1,3,6,7,8],[2,5],[4]] => [[1,2,4],[3,5],[6],[7],[8]] => 24
[3,1,1,1,1,1] => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => [[1,2,3],[4],[5],[6],[7],[8]] => 25
[2,2,2,2] => [4,4] => [[1,2,3,4],[5,6,7,8]] => [[1,5],[2,6],[3,7],[4,8]] => 24
[2,2,2,1,1] => [5,3] => [[1,2,3,7,8],[4,5,6]] => [[1,4],[2,5],[3,6],[7],[8]] => 25
[2,2,1,1,1,1] => [6,2] => [[1,2,5,6,7,8],[3,4]] => [[1,3],[2,4],[5],[6],[7],[8]] => 26
[2,1,1,1,1,1,1] => [7,1] => [[1,3,4,5,6,7,8],[2]] => [[1,2],[3],[4],[5],[6],[7],[8]] => 27
[1,1,1,1,1,1,1,1] => [8] => [[1,2,3,4,5,6,7,8]] => [[1],[2],[3],[4],[5],[6],[7],[8]] => 28
[9] => [1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [[1,2,3,4,5,6,7,8,9]] => 0
[8,1] => [2,1,1,1,1,1,1,1] => [[1,9],[2],[3],[4],[5],[6],[7],[8]] => [[1,2,3,4,5,6,7,8],[9]] => 8
[7,2] => [2,2,1,1,1,1,1] => [[1,7],[2,9],[3],[4],[5],[6],[8]] => [[1,2,3,4,5,6,8],[7,9]] => 14
[7,1,1] => [3,1,1,1,1,1,1] => [[1,8,9],[2],[3],[4],[5],[6],[7]] => [[1,2,3,4,5,6,7],[8],[9]] => 15
[6,3] => [2,2,2,1,1,1] => [[1,5],[2,7],[3,9],[4],[6],[8]] => [[1,2,3,4,6,8],[5,7,9]] => 18
[6,2,1] => [3,2,1,1,1,1] => [[1,6,9],[2,8],[3],[4],[5],[7]] => [[1,2,3,4,5,7],[6,8],[9]] => 20
[6,1,1,1] => [4,1,1,1,1,1] => [[1,7,8,9],[2],[3],[4],[5],[6]] => [[1,2,3,4,5,6],[7],[8],[9]] => 21
[5,4] => [2,2,2,2,1] => [[1,3],[2,5],[4,7],[6,9],[8]] => [[1,2,4,6,8],[3,5,7,9]] => 20
[5,3,1] => [3,2,2,1,1] => [[1,4,9],[2,6],[3,8],[5],[7]] => [[1,2,3,5,7],[4,6,8],[9]] => 23
[5,2,2] => [3,3,1,1,1] => [[1,5,6],[2,8,9],[3],[4],[7]] => [[1,2,3,4,7],[5,8],[6,9]] => 24
[5,2,1,1] => [4,2,1,1,1] => [[1,5,8,9],[2,7],[3],[4],[6]] => [[1,2,3,4,6],[5,7],[8],[9]] => 25
[5,1,1,1,1] => [5,1,1,1,1] => [[1,6,7,8,9],[2],[3],[4],[5]] => [[1,2,3,4,5],[6],[7],[8],[9]] => 26
[4,4,1] => [3,2,2,2] => [[1,2,9],[3,4],[5,6],[7,8]] => [[1,3,5,7],[2,4,6,8],[9]] => 24
[4,3,2] => [3,3,2,1] => [[1,3,6],[2,5,9],[4,8],[7]] => [[1,2,4,7],[3,5,8],[6,9]] => 26
[4,3,1,1] => [4,2,2,1] => [[1,3,8,9],[2,5],[4,7],[6]] => [[1,2,4,6],[3,5,7],[8],[9]] => 27
[4,2,2,1] => [4,3,1,1] => [[1,4,5,9],[2,7,8],[3],[6]] => [[1,2,3,6],[4,7],[5,8],[9]] => 28
[4,2,1,1,1] => [5,2,1,1] => [[1,4,7,8,9],[2,6],[3],[5]] => [[1,2,3,5],[4,6],[7],[8],[9]] => 29
[4,1,1,1,1,1] => [6,1,1,1] => [[1,5,6,7,8,9],[2],[3],[4]] => [[1,2,3,4],[5],[6],[7],[8],[9]] => 30
[3,3,3] => [3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => [[1,4,7],[2,5,8],[3,6,9]] => 27
[3,3,2,1] => [4,3,2] => [[1,2,5,9],[3,4,8],[6,7]] => [[1,3,6],[2,4,7],[5,8],[9]] => 29
[3,3,1,1,1] => [5,2,2] => [[1,2,7,8,9],[3,4],[5,6]] => [[1,3,5],[2,4,6],[7],[8],[9]] => 30
[3,2,2,2] => [4,4,1] => [[1,3,4,5],[2,7,8,9],[6]] => [[1,2,6],[3,7],[4,8],[5,9]] => 30
[3,2,2,1,1] => [5,3,1] => [[1,3,4,8,9],[2,6,7],[5]] => [[1,2,5],[3,6],[4,7],[8],[9]] => 31
[3,2,1,1,1,1] => [6,2,1] => [[1,3,6,7,8,9],[2,5],[4]] => [[1,2,4],[3,5],[6],[7],[8],[9]] => 32
[3,1,1,1,1,1,1] => [7,1,1] => [[1,4,5,6,7,8,9],[2],[3]] => [[1,2,3],[4],[5],[6],[7],[8],[9]] => 33
[2,2,2,2,1] => [5,4] => [[1,2,3,4,9],[5,6,7,8]] => [[1,5],[2,6],[3,7],[4,8],[9]] => 32
[2,2,2,1,1,1] => [6,3] => [[1,2,3,7,8,9],[4,5,6]] => [[1,4],[2,5],[3,6],[7],[8],[9]] => 33
[2,2,1,1,1,1,1] => [7,2] => [[1,2,5,6,7,8,9],[3,4]] => [[1,3],[2,4],[5],[6],[7],[8],[9]] => 34
[2,1,1,1,1,1,1,1] => [8,1] => [[1,3,4,5,6,7,8,9],[2]] => [[1,2],[3],[4],[5],[6],[7],[8],[9]] => 35
[1,1,1,1,1,1,1,1,1] => [9] => [[1,2,3,4,5,6,7,8,9]] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => 36
[10] => [1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => [[1,2,3,4,5,6,7,8,9,10]] => 0
[9,1] => [2,1,1,1,1,1,1,1,1] => [[1,10],[2],[3],[4],[5],[6],[7],[8],[9]] => [[1,2,3,4,5,6,7,8,9],[10]] => 9
[8,2] => [2,2,1,1,1,1,1,1] => [[1,8],[2,10],[3],[4],[5],[6],[7],[9]] => [[1,2,3,4,5,6,7,9],[8,10]] => 16
[8,1,1] => [3,1,1,1,1,1,1,1] => [[1,9,10],[2],[3],[4],[5],[6],[7],[8]] => [[1,2,3,4,5,6,7,8],[9],[10]] => 17
[7,3] => [2,2,2,1,1,1,1] => [[1,6],[2,8],[3,10],[4],[5],[7],[9]] => [[1,2,3,4,5,7,9],[6,8,10]] => 21
>>> Load all 142 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The (standard) major index of a standard tableau.
A descent of a standard tableau T is an index i such that i+1 appears in a row strictly below the row of i. The (standard) major index is the the sum of the descents.
A descent of a standard tableau T is an index i such that i+1 appears in a row strictly below the row of i. The (standard) major index is the the sum of the descents.
Map
reading tableau
Description
Return the RSK recording tableau of the reading word of the (standard) tableau T labeled down (in English convention) each column to the shape of a partition.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition λ of n is the partition λ∗ whose Ferrers diagram is obtained from the diagram of λ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
The conjugate partition of the partition λ of n is the partition λ∗ whose Ferrers diagram is obtained from the diagram of λ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
Map
conjugate
Description
Sends a standard tableau to its conjugate tableau.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!