Processing math: 100%

Identifier
Values
[1,0] => [1,0] => [1,0] => [1] => 0
[1,0,1,0] => [1,0,1,0] => [1,0,1,0] => [2,1] => 1
[1,1,0,0] => [1,0,1,0] => [1,0,1,0] => [2,1] => 1
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => [2,1,3] => 2
[1,0,1,1,0,0] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => [2,1,3] => 2
[1,1,0,0,1,0] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => [2,1,3] => 2
[1,1,0,1,0,0] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => [2,1,3] => 2
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => [2,1,3] => 2
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [4,3,2,1] => 3
[1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [4,3,2,1] => 3
[1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [4,3,2,1] => 3
[1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [4,3,2,1] => 3
[1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [4,3,2,1] => 3
[1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [4,3,2,1] => 3
[1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [4,3,2,1] => 3
[1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [4,3,2,1] => 3
[1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [4,3,2,1] => 3
[1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [4,3,2,1] => 3
[1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [4,3,2,1] => 3
[1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [4,3,2,1] => 3
[1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [4,3,2,1] => 3
[1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,1,0,1,0,0,0] => [2,1,3,4] => 2
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [5,3,2,1,4] => 3
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [5,3,2,1,4] => 3
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 4
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [5,3,2,1,4] => 3
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,0] => [4,3,2,5,1] => 3
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,0] => [4,3,2,5,1] => 3
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,0] => [4,3,2,5,1] => 3
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0] => [5,3,2,4,1] => 3
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,0] => [2,1,3,4,5] => 2
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [5,6,4,3,2,1] => 4
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [5,6,4,3,2,1] => 4
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [5,6,4,3,2,1] => 4
>>> Load all 196 entries. <<<
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,3,2,1,5,6] => 4
[1,0,1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,3,2,1,5,6] => 4
[1,0,1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,3,2,1,5,6] => 4
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [5,3,2,1,4,6] => 4
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [6,3,2,1,4,5] => 3
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [5,6,4,3,2,1] => 4
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [5,6,4,3,2,1] => 4
[1,1,0,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [5,6,4,3,2,1] => 4
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,3,2,1,5,6] => 4
[1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,3,2,1,5,6] => 4
[1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,3,2,1,5,6] => 4
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [5,3,2,1,4,6] => 4
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [6,3,2,1,4,5] => 3
[1,1,1,0,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [5,6,4,3,2,1] => 4
[1,1,1,0,1,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,1,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,1,0,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [5,6,4,3,2,1] => 4
[1,1,1,0,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,3,2,1,5,6] => 4
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,3,2,1,5,6] => 4
[1,1,1,0,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,3,2,1,5,6] => 4
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [5,3,2,1,4,6] => 4
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [6,3,2,1,4,5] => 3
[1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [6,5,4,3,1,2] => 4
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [6,5,4,3,1,2] => 4
[1,1,1,1,0,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [6,5,4,3,1,2] => 4
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [6,5,4,3,1,2] => 4
[1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [6,5,4,3,1,2] => 4
[1,1,1,1,0,0,1,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [6,5,4,3,1,2] => 4
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [6,5,4,3,1,2] => 4
[1,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [6,5,4,3,1,2] => 4
[1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [5,6,4,3,1,2] => 3
[1,1,1,1,0,1,0,0,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [4,3,2,5,1,6] => 4
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [4,3,2,5,1,6] => 4
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [4,3,2,5,1,6] => 4
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [5,3,2,4,1,6] => 4
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => [6,3,2,4,1,5] => 3
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => [4,3,2,5,6,1] => 3
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => [4,3,2,5,6,1] => 3
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => [4,3,2,5,6,1] => 3
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => [5,3,2,4,6,1] => 4
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [6,3,2,4,5,1] => 3
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [2,1,3,4,5,6] => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The dez statistic, the number of descents of a permutation after replacing fixed points by zeros.
This descent set is denoted by ZDer(σ) in [1].
Map
Barnabei-Castronuovo involution
Description
The Barnabei-Castronuovo Schützenberger involution on Dyck paths.
The image of a Dyck path is obtained by reversing the canonical decompositions of the two halves of the Dyck path. More precisely, let D1,1,D2,1, be the canonical decomposition of the first half, then the canonical decomposition of the first half of the image is ,1,D2,1,D1.
Map
peeling map
Description
Send a Dyck path to its peeled Dyck path.
Map
to 132-avoiding permutation
Description
Sends a Dyck path to a 132-avoiding permutation.
This bijection is defined in [1, Section 2].