Identifier
-
Mp00146:
Dyck paths
—to tunnel matching⟶
Perfect matchings
Mp00058: Perfect matchings —to permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000337: Permutations ⟶ ℤ
Values
[1,0] => [(1,2)] => [2,1] => [2,1] => 1
[1,0,1,0] => [(1,2),(3,4)] => [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,0] => [(1,4),(2,3)] => [4,3,2,1] => [4,3,2,1] => 2
[1,0,1,0,1,0] => [(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => [2,1,4,3,6,5] => 3
[1,0,1,1,0,0] => [(1,2),(3,6),(4,5)] => [2,1,6,5,4,3] => [2,1,6,5,4,3] => 3
[1,1,0,0,1,0] => [(1,4),(2,3),(5,6)] => [4,3,2,1,6,5] => [4,3,2,1,6,5] => 3
[1,1,0,1,0,0] => [(1,6),(2,3),(4,5)] => [6,3,2,5,4,1] => [6,5,3,4,2,1] => 3
[1,1,1,0,0,0] => [(1,6),(2,5),(3,4)] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => 3
[1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 4
[1,0,1,0,1,1,0,0] => [(1,2),(3,4),(5,8),(6,7)] => [2,1,4,3,8,7,6,5] => [2,1,4,3,8,7,6,5] => 4
[1,0,1,1,0,0,1,0] => [(1,2),(3,6),(4,5),(7,8)] => [2,1,6,5,4,3,8,7] => [2,1,6,5,4,3,8,7] => 4
[1,0,1,1,1,0,0,0] => [(1,2),(3,8),(4,7),(5,6)] => [2,1,8,7,6,5,4,3] => [2,1,8,7,6,5,4,3] => 4
[1,1,0,0,1,0,1,0] => [(1,4),(2,3),(5,6),(7,8)] => [4,3,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 4
[1,1,0,0,1,1,0,0] => [(1,4),(2,3),(5,8),(6,7)] => [4,3,2,1,8,7,6,5] => [4,3,2,1,8,7,6,5] => 4
[1,1,1,0,0,0,1,0] => [(1,6),(2,5),(3,4),(7,8)] => [6,5,4,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 4
[1,1,1,0,1,0,0,0] => [(1,8),(2,7),(3,4),(5,6)] => [8,7,4,3,6,5,2,1] => [8,7,6,5,4,3,2,1] => 4
[1,1,1,1,0,0,0,0] => [(1,8),(2,7),(3,6),(4,5)] => [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => 4
[1,0,1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 5
[1,0,1,0,1,0,1,1,0,0] => [(1,2),(3,4),(5,6),(7,10),(8,9)] => [2,1,4,3,6,5,10,9,8,7] => [2,1,4,3,6,5,10,9,8,7] => 5
[1,0,1,0,1,1,0,0,1,0] => [(1,2),(3,4),(5,8),(6,7),(9,10)] => [2,1,4,3,8,7,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 5
[1,0,1,0,1,1,1,0,0,0] => [(1,2),(3,4),(5,10),(6,9),(7,8)] => [2,1,4,3,10,9,8,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 5
[1,0,1,1,0,0,1,0,1,0] => [(1,2),(3,6),(4,5),(7,8),(9,10)] => [2,1,6,5,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 5
[1,0,1,1,0,0,1,1,0,0] => [(1,2),(3,6),(4,5),(7,10),(8,9)] => [2,1,6,5,4,3,10,9,8,7] => [2,1,6,5,4,3,10,9,8,7] => 5
[1,0,1,1,1,0,0,0,1,0] => [(1,2),(3,8),(4,7),(5,6),(9,10)] => [2,1,8,7,6,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 5
[1,0,1,1,1,0,1,0,0,0] => [(1,2),(3,10),(4,9),(5,6),(7,8)] => [2,1,10,9,6,5,8,7,4,3] => [2,1,10,9,8,7,6,5,4,3] => 5
[1,0,1,1,1,1,0,0,0,0] => [(1,2),(3,10),(4,9),(5,8),(6,7)] => [2,1,10,9,8,7,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 5
[1,1,0,0,1,0,1,0,1,0] => [(1,4),(2,3),(5,6),(7,8),(9,10)] => [4,3,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 5
[1,1,0,0,1,0,1,1,0,0] => [(1,4),(2,3),(5,6),(7,10),(8,9)] => [4,3,2,1,6,5,10,9,8,7] => [4,3,2,1,6,5,10,9,8,7] => 5
[1,1,0,0,1,1,0,0,1,0] => [(1,4),(2,3),(5,8),(6,7),(9,10)] => [4,3,2,1,8,7,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 5
[1,1,0,0,1,1,1,0,0,0] => [(1,4),(2,3),(5,10),(6,9),(7,8)] => [4,3,2,1,10,9,8,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 5
[1,1,1,0,0,0,1,0,1,0] => [(1,6),(2,5),(3,4),(7,8),(9,10)] => [6,5,4,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 5
[1,1,1,0,0,0,1,1,0,0] => [(1,6),(2,5),(3,4),(7,10),(8,9)] => [6,5,4,3,2,1,10,9,8,7] => [6,5,4,3,2,1,10,9,8,7] => 5
[1,1,1,0,1,0,0,0,1,0] => [(1,8),(2,7),(3,4),(5,6),(9,10)] => [8,7,4,3,6,5,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 5
[1,1,1,0,1,0,1,0,0,0] => [(1,10),(2,9),(3,4),(5,6),(7,8)] => [10,9,4,3,6,5,8,7,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5
[1,1,1,0,1,1,0,0,0,0] => [(1,10),(2,9),(3,4),(5,8),(6,7)] => [10,9,4,3,8,7,6,5,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5
[1,1,1,1,0,0,0,0,1,0] => [(1,8),(2,7),(3,6),(4,5),(9,10)] => [8,7,6,5,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 5
[1,1,1,1,0,0,1,0,0,0] => [(1,10),(2,9),(3,6),(4,5),(7,8)] => [10,9,6,5,4,3,8,7,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5
[1,1,1,1,0,1,0,0,0,0] => [(1,10),(2,9),(3,8),(4,5),(6,7)] => [10,9,8,5,4,7,6,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5
[1,1,1,1,1,0,0,0,0,0] => [(1,10),(2,9),(3,8),(4,7),(5,6)] => [10,9,8,7,6,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5
[1,0,1,0,1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 6
[1,0,1,0,1,0,1,0,1,1,0,0] => [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] => [2,1,4,3,6,5,8,7,12,11,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 6
[1,0,1,0,1,0,1,1,0,0,1,0] => [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] => [2,1,4,3,6,5,10,9,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 6
[1,0,1,0,1,0,1,1,1,0,0,0] => [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] => [2,1,4,3,6,5,12,11,10,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 6
[1,0,1,0,1,1,0,0,1,0,1,0] => [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] => [2,1,4,3,8,7,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 6
[1,0,1,0,1,1,0,0,1,1,0,0] => [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] => [2,1,4,3,8,7,6,5,12,11,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 6
[1,0,1,0,1,1,1,0,0,0,1,0] => [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] => [2,1,4,3,10,9,8,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 6
[1,0,1,0,1,1,1,0,1,0,0,0] => [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] => [2,1,4,3,12,11,8,7,10,9,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 6
[1,0,1,0,1,1,1,1,0,0,0,0] => [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] => [2,1,4,3,12,11,10,9,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 6
[1,0,1,1,0,0,1,0,1,0,1,0] => [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)] => [2,1,6,5,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 6
[1,0,1,1,0,0,1,0,1,1,0,0] => [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)] => [2,1,6,5,4,3,8,7,12,11,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 6
[1,0,1,1,0,0,1,1,0,0,1,0] => [(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)] => [2,1,6,5,4,3,10,9,8,7,12,11] => [2,1,6,5,4,3,10,9,8,7,12,11] => 6
[1,0,1,1,0,0,1,1,1,0,0,0] => [(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)] => [2,1,6,5,4,3,12,11,10,9,8,7] => [2,1,6,5,4,3,12,11,10,9,8,7] => 6
[1,0,1,1,1,0,0,0,1,0,1,0] => [(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)] => [2,1,8,7,6,5,4,3,10,9,12,11] => [2,1,8,7,6,5,4,3,10,9,12,11] => 6
[1,0,1,1,1,0,0,0,1,1,0,0] => [(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)] => [2,1,8,7,6,5,4,3,12,11,10,9] => [2,1,8,7,6,5,4,3,12,11,10,9] => 6
[1,0,1,1,1,0,1,0,0,0,1,0] => [(1,2),(3,10),(4,9),(5,6),(7,8),(11,12)] => [2,1,10,9,6,5,8,7,4,3,12,11] => [2,1,10,9,8,7,6,5,4,3,12,11] => 6
[1,0,1,1,1,0,1,0,1,0,0,0] => [(1,2),(3,12),(4,11),(5,6),(7,8),(9,10)] => [2,1,12,11,6,5,8,7,10,9,4,3] => [2,1,12,11,10,9,8,7,6,5,4,3] => 6
[1,0,1,1,1,0,1,1,0,0,0,0] => [(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)] => [2,1,12,11,6,5,10,9,8,7,4,3] => [2,1,12,11,10,9,8,7,6,5,4,3] => 6
[1,0,1,1,1,1,0,0,0,0,1,0] => [(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)] => [2,1,10,9,8,7,6,5,4,3,12,11] => [2,1,10,9,8,7,6,5,4,3,12,11] => 6
[1,0,1,1,1,1,0,0,1,0,0,0] => [(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)] => [2,1,12,11,8,7,6,5,10,9,4,3] => [2,1,12,11,10,9,8,7,6,5,4,3] => 6
[1,0,1,1,1,1,0,1,0,0,0,0] => [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)] => [2,1,12,11,10,7,6,9,8,5,4,3] => [2,1,12,11,10,9,8,7,6,5,4,3] => 6
[1,0,1,1,1,1,1,0,0,0,0,0] => [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)] => [2,1,12,11,10,9,8,7,6,5,4,3] => [2,1,12,11,10,9,8,7,6,5,4,3] => 6
[1,1,0,0,1,0,1,0,1,0,1,0] => [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)] => [4,3,2,1,6,5,8,7,10,9,12,11] => [4,3,2,1,6,5,8,7,10,9,12,11] => 6
[1,1,0,0,1,0,1,0,1,1,0,0] => [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)] => [4,3,2,1,6,5,8,7,12,11,10,9] => [4,3,2,1,6,5,8,7,12,11,10,9] => 6
[1,1,0,0,1,0,1,1,0,0,1,0] => [(1,4),(2,3),(5,6),(7,10),(8,9),(11,12)] => [4,3,2,1,6,5,10,9,8,7,12,11] => [4,3,2,1,6,5,10,9,8,7,12,11] => 6
[1,1,0,0,1,0,1,1,1,0,0,0] => [(1,4),(2,3),(5,6),(7,12),(8,11),(9,10)] => [4,3,2,1,6,5,12,11,10,9,8,7] => [4,3,2,1,6,5,12,11,10,9,8,7] => 6
[1,1,0,0,1,1,0,0,1,0,1,0] => [(1,4),(2,3),(5,8),(6,7),(9,10),(11,12)] => [4,3,2,1,8,7,6,5,10,9,12,11] => [4,3,2,1,8,7,6,5,10,9,12,11] => 6
[1,1,0,0,1,1,0,0,1,1,0,0] => [(1,4),(2,3),(5,8),(6,7),(9,12),(10,11)] => [4,3,2,1,8,7,6,5,12,11,10,9] => [4,3,2,1,8,7,6,5,12,11,10,9] => 6
[1,1,0,0,1,1,1,0,0,0,1,0] => [(1,4),(2,3),(5,10),(6,9),(7,8),(11,12)] => [4,3,2,1,10,9,8,7,6,5,12,11] => [4,3,2,1,10,9,8,7,6,5,12,11] => 6
[1,1,0,0,1,1,1,0,1,0,0,0] => [(1,4),(2,3),(5,12),(6,11),(7,8),(9,10)] => [4,3,2,1,12,11,8,7,10,9,6,5] => [4,3,2,1,12,11,10,9,8,7,6,5] => 6
[1,1,0,0,1,1,1,1,0,0,0,0] => [(1,4),(2,3),(5,12),(6,11),(7,10),(8,9)] => [4,3,2,1,12,11,10,9,8,7,6,5] => [4,3,2,1,12,11,10,9,8,7,6,5] => 6
[1,1,1,0,0,0,1,0,1,0,1,0] => [(1,6),(2,5),(3,4),(7,8),(9,10),(11,12)] => [6,5,4,3,2,1,8,7,10,9,12,11] => [6,5,4,3,2,1,8,7,10,9,12,11] => 6
[1,1,1,0,0,0,1,0,1,1,0,0] => [(1,6),(2,5),(3,4),(7,8),(9,12),(10,11)] => [6,5,4,3,2,1,8,7,12,11,10,9] => [6,5,4,3,2,1,8,7,12,11,10,9] => 6
[1,1,1,0,0,0,1,1,0,0,1,0] => [(1,6),(2,5),(3,4),(7,10),(8,9),(11,12)] => [6,5,4,3,2,1,10,9,8,7,12,11] => [6,5,4,3,2,1,10,9,8,7,12,11] => 6
[1,1,1,0,0,0,1,1,1,0,0,0] => [(1,6),(2,5),(3,4),(7,12),(8,11),(9,10)] => [6,5,4,3,2,1,12,11,10,9,8,7] => [6,5,4,3,2,1,12,11,10,9,8,7] => 6
[1,1,1,0,1,0,0,0,1,0,1,0] => [(1,8),(2,7),(3,4),(5,6),(9,10),(11,12)] => [8,7,4,3,6,5,2,1,10,9,12,11] => [8,7,6,5,4,3,2,1,10,9,12,11] => 6
[1,1,1,0,1,0,0,0,1,1,0,0] => [(1,8),(2,7),(3,4),(5,6),(9,12),(10,11)] => [8,7,4,3,6,5,2,1,12,11,10,9] => [8,7,6,5,4,3,2,1,12,11,10,9] => 6
[1,1,1,0,1,0,1,0,0,0,1,0] => [(1,10),(2,9),(3,4),(5,6),(7,8),(11,12)] => [10,9,4,3,6,5,8,7,2,1,12,11] => [10,9,8,7,6,5,4,3,2,1,12,11] => 6
[1,1,1,0,1,0,1,0,1,0,0,0] => [(1,12),(2,11),(3,4),(5,6),(7,8),(9,10)] => [12,11,4,3,6,5,8,7,10,9,2,1] => [12,11,10,9,6,5,8,7,4,3,2,1] => 6
[1,1,1,0,1,0,1,1,0,0,0,0] => [(1,12),(2,11),(3,4),(5,6),(7,10),(8,9)] => [12,11,4,3,6,5,10,9,8,7,2,1] => [12,11,10,9,6,5,8,7,4,3,2,1] => 6
[1,1,1,0,1,1,0,0,0,0,1,0] => [(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)] => [10,9,4,3,8,7,6,5,2,1,12,11] => [10,9,8,7,6,5,4,3,2,1,12,11] => 6
[1,1,1,0,1,1,0,0,1,0,0,0] => [(1,12),(2,11),(3,4),(5,8),(6,7),(9,10)] => [12,11,4,3,8,7,6,5,10,9,2,1] => [12,11,10,9,8,7,6,5,4,3,2,1] => 6
[1,1,1,0,1,1,0,1,0,0,0,0] => [(1,12),(2,11),(3,4),(5,10),(6,7),(8,9)] => [12,11,4,3,10,7,6,9,8,5,2,1] => [12,11,10,9,8,7,6,5,4,3,2,1] => 6
[1,1,1,0,1,1,1,0,0,0,0,0] => [(1,12),(2,11),(3,4),(5,10),(6,9),(7,8)] => [12,11,4,3,10,9,8,7,6,5,2,1] => [12,11,10,9,8,7,6,5,4,3,2,1] => 6
[1,1,1,1,0,0,0,0,1,0,1,0] => [(1,8),(2,7),(3,6),(4,5),(9,10),(11,12)] => [8,7,6,5,4,3,2,1,10,9,12,11] => [8,7,6,5,4,3,2,1,10,9,12,11] => 6
[1,1,1,1,0,0,0,0,1,1,0,0] => [(1,8),(2,7),(3,6),(4,5),(9,12),(10,11)] => [8,7,6,5,4,3,2,1,12,11,10,9] => [8,7,6,5,4,3,2,1,12,11,10,9] => 6
[1,1,1,1,0,0,1,0,0,0,1,0] => [(1,10),(2,9),(3,6),(4,5),(7,8),(11,12)] => [10,9,6,5,4,3,8,7,2,1,12,11] => [10,9,8,7,6,5,4,3,2,1,12,11] => 6
[1,1,1,1,0,0,1,0,1,0,0,0] => [(1,12),(2,11),(3,6),(4,5),(7,8),(9,10)] => [12,11,6,5,4,3,8,7,10,9,2,1] => [12,11,10,9,6,5,8,7,4,3,2,1] => 6
[1,1,1,1,0,0,1,1,0,0,0,0] => [(1,12),(2,11),(3,6),(4,5),(7,10),(8,9)] => [12,11,6,5,4,3,10,9,8,7,2,1] => [12,11,10,9,6,5,8,7,4,3,2,1] => 6
[1,1,1,1,0,1,0,0,0,0,1,0] => [(1,10),(2,9),(3,8),(4,5),(6,7),(11,12)] => [10,9,8,5,4,7,6,3,2,1,12,11] => [10,9,8,7,6,5,4,3,2,1,12,11] => 6
[1,1,1,1,0,1,0,0,1,0,0,0] => [(1,12),(2,11),(3,8),(4,5),(6,7),(9,10)] => [12,11,8,5,4,7,6,3,10,9,2,1] => [12,11,10,9,8,7,6,5,4,3,2,1] => 6
[1,1,1,1,0,1,0,1,0,0,0,0] => [(1,12),(2,11),(3,10),(4,5),(6,7),(8,9)] => [12,11,10,5,4,7,6,9,8,3,2,1] => [12,11,10,9,8,7,6,5,4,3,2,1] => 6
[1,1,1,1,0,1,1,0,0,0,0,0] => [(1,12),(2,11),(3,10),(4,5),(6,9),(7,8)] => [12,11,10,5,4,9,8,7,6,3,2,1] => [12,11,10,9,8,7,6,5,4,3,2,1] => 6
[1,1,1,1,1,0,0,0,0,0,1,0] => [(1,10),(2,9),(3,8),(4,7),(5,6),(11,12)] => [10,9,8,7,6,5,4,3,2,1,12,11] => [10,9,8,7,6,5,4,3,2,1,12,11] => 6
[1,1,1,1,1,0,0,0,1,0,0,0] => [(1,12),(2,11),(3,8),(4,7),(5,6),(9,10)] => [12,11,8,7,6,5,4,3,10,9,2,1] => [12,11,10,9,8,7,6,5,4,3,2,1] => 6
[1,1,1,1,1,0,0,1,0,0,0,0] => [(1,12),(2,11),(3,10),(4,7),(5,6),(8,9)] => [12,11,10,7,6,5,4,9,8,3,2,1] => [12,11,10,9,8,7,6,5,4,3,2,1] => 6
[1,1,1,1,1,0,1,0,0,0,0,0] => [(1,12),(2,11),(3,10),(4,9),(5,6),(7,8)] => [12,11,10,9,6,5,8,7,4,3,2,1] => [12,11,10,9,8,7,6,5,4,3,2,1] => 6
[1,1,1,1,1,1,0,0,0,0,0,0] => [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)] => [12,11,10,9,8,7,6,5,4,3,2,1] => [12,11,10,9,8,7,6,5,4,3,2,1] => 6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The lec statistic, the sum of the inversion numbers of the hook factors of a permutation.
For a permutation $\sigma = p \tau_{1} \tau_{2} \cdots \tau_{k}$ in its hook factorization, [1] defines $$ \textrm{lec} \, \sigma = \sum_{1 \leq i \leq k} \textrm{inv} \, \tau_{i} \, ,$$ where $\textrm{inv} \, \tau_{i}$ is the number of inversions of $\tau_{i}$.
For a permutation $\sigma = p \tau_{1} \tau_{2} \cdots \tau_{k}$ in its hook factorization, [1] defines $$ \textrm{lec} \, \sigma = \sum_{1 \leq i \leq k} \textrm{inv} \, \tau_{i} \, ,$$ where $\textrm{inv} \, \tau_{i}$ is the number of inversions of $\tau_{i}$.
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
to tunnel matching
Description
Sends a Dyck path of semilength n to the noncrossing perfect matching given by matching an up-step with the corresponding down-step.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.
Map
Demazure product with inverse
Description
This map sends a permutation $\pi$ to $\pi^{-1} \star \pi$ where $\star$ denotes the Demazure product on permutations.
This map is a surjection onto the set of involutions, i.e., the set of permutations $\pi$ for which $\pi = \pi^{-1}$.
This map is a surjection onto the set of involutions, i.e., the set of permutations $\pi$ for which $\pi = \pi^{-1}$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!