Identifier
- St000345: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>1
[2]=>2
[1,1]=>1
[3]=>3
[2,1]=>2
[1,1,1]=>1
[4]=>5
[3,1]=>3
[2,2]=>3
[2,1,1]=>2
[1,1,1,1]=>1
[5]=>7
[4,1]=>5
[3,2]=>5
[3,1,1]=>3
[2,2,1]=>3
[2,1,1,1]=>2
[1,1,1,1,1]=>1
[6]=>11
[5,1]=>7
[4,2]=>8
[4,1,1]=>5
[3,3]=>6
[3,2,1]=>5
[3,1,1,1]=>3
[2,2,2]=>4
[2,2,1,1]=>3
[2,1,1,1,1]=>2
[1,1,1,1,1,1]=>1
[7]=>15
[6,1]=>11
[5,2]=>11
[5,1,1]=>7
[4,3]=>11
[4,2,1]=>8
[4,1,1,1]=>5
[3,3,1]=>6
[3,2,2]=>7
[3,2,1,1]=>5
[3,1,1,1,1]=>3
[2,2,2,1]=>4
[2,2,1,1,1]=>3
[2,1,1,1,1,1]=>2
[1,1,1,1,1,1,1]=>1
[8]=>22
[7,1]=>15
[6,2]=>17
[6,1,1]=>11
[5,3]=>15
[5,2,1]=>11
[5,1,1,1]=>7
[4,4]=>14
[4,3,1]=>11
[4,2,2]=>11
[4,2,1,1]=>8
[4,1,1,1,1]=>5
[3,3,2]=>9
[3,3,1,1]=>6
[3,2,2,1]=>7
[3,2,1,1,1]=>5
[3,1,1,1,1,1]=>3
[2,2,2,2]=>5
[2,2,2,1,1]=>4
[2,2,1,1,1,1]=>3
[2,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1]=>1
[9]=>30
[8,1]=>22
[7,2]=>23
[7,1,1]=>15
[6,3]=>23
[6,2,1]=>17
[6,1,1,1]=>11
[5,4]=>22
[5,3,1]=>15
[5,2,2]=>15
[5,2,1,1]=>11
[5,1,1,1,1]=>7
[4,4,1]=>14
[4,3,2]=>16
[4,3,1,1]=>11
[4,2,2,1]=>11
[4,2,1,1,1]=>8
[4,1,1,1,1,1]=>5
[3,3,3]=>10
[3,3,2,1]=>9
[3,3,1,1,1]=>6
[3,2,2,2]=>9
[3,2,2,1,1]=>7
[3,2,1,1,1,1]=>5
[3,1,1,1,1,1,1]=>3
[2,2,2,2,1]=>5
[2,2,2,1,1,1]=>4
[2,2,1,1,1,1,1]=>3
[2,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1]=>1
[10]=>42
[9,1]=>30
[8,2]=>33
[8,1,1]=>22
[7,3]=>30
[7,2,1]=>23
[7,1,1,1]=>15
[6,4]=>33
[6,3,1]=>23
[6,2,2]=>23
[6,2,1,1]=>17
[6,1,1,1,1]=>11
[5,5]=>25
[5,4,1]=>22
[5,3,2]=>22
[5,3,1,1]=>15
[5,2,2,1]=>15
[5,2,1,1,1]=>11
[5,1,1,1,1,1]=>7
[4,4,2]=>20
[4,4,1,1]=>14
[4,3,3]=>19
[4,3,2,1]=>16
[4,3,1,1,1]=>11
[4,2,2,2]=>14
[4,2,2,1,1]=>11
[4,2,1,1,1,1]=>8
[4,1,1,1,1,1,1]=>5
[3,3,3,1]=>10
[3,3,2,2]=>12
[3,3,2,1,1]=>9
[3,3,1,1,1,1]=>6
[3,2,2,2,1]=>9
[3,2,2,1,1,1]=>7
[3,2,1,1,1,1,1]=>5
[3,1,1,1,1,1,1,1]=>3
[2,2,2,2,2]=>6
[2,2,2,2,1,1]=>5
[2,2,2,1,1,1,1]=>4
[2,2,1,1,1,1,1,1]=>3
[2,1,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1,1]=>1
[11]=>56
[10,1]=>42
[9,2]=>45
[9,1,1]=>30
[8,3]=>44
[8,2,1]=>33
[8,1,1,1]=>22
[7,4]=>44
[7,3,1]=>30
[7,2,2]=>31
[7,2,1,1]=>23
[7,1,1,1,1]=>15
[6,5]=>43
[6,4,1]=>33
[6,3,2]=>33
[6,3,1,1]=>23
[6,2,2,1]=>23
[6,2,1,1,1]=>17
[6,1,1,1,1,1]=>11
[5,5,1]=>25
[5,4,2]=>31
[5,4,1,1]=>22
[5,3,3]=>26
[5,3,2,1]=>22
[5,3,1,1,1]=>15
[5,2,2,2]=>19
[5,2,2,1,1]=>15
[5,2,1,1,1,1]=>11
[5,1,1,1,1,1,1]=>7
[4,4,3]=>26
[4,4,2,1]=>20
[4,4,1,1,1]=>14
[4,3,3,1]=>19
[4,3,2,2]=>21
[4,3,2,1,1]=>16
[4,3,1,1,1,1]=>11
[4,2,2,2,1]=>14
[4,2,2,1,1,1]=>11
[4,2,1,1,1,1,1]=>8
[4,1,1,1,1,1,1,1]=>5
[3,3,3,2]=>14
[3,3,3,1,1]=>10
[3,3,2,2,1]=>12
[3,3,2,1,1,1]=>9
[3,3,1,1,1,1,1]=>6
[3,2,2,2,2]=>11
[3,2,2,2,1,1]=>9
[3,2,2,1,1,1,1]=>7
[3,2,1,1,1,1,1,1]=>5
[3,1,1,1,1,1,1,1,1]=>3
[2,2,2,2,2,1]=>6
[2,2,2,2,1,1,1]=>5
[2,2,2,1,1,1,1,1]=>4
[2,2,1,1,1,1,1,1,1]=>3
[2,1,1,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1,1,1]=>1
[12]=>77
[11,1]=>56
[10,2]=>62
[10,1,1]=>42
[9,3]=>58
[9,2,1]=>45
[9,1,1,1]=>30
[8,4]=>62
[8,3,1]=>44
[8,2,2]=>44
[8,2,1,1]=>33
[8,1,1,1,1]=>22
[7,5]=>56
[7,4,1]=>44
[7,3,2]=>43
[7,3,1,1]=>30
[7,2,2,1]=>31
[7,2,1,1,1]=>23
[7,1,1,1,1,1]=>15
[6,6]=>53
[6,5,1]=>43
[6,4,2]=>47
[6,4,1,1]=>33
[6,3,3]=>39
[6,3,2,1]=>33
[6,3,1,1,1]=>23
[6,2,2,2]=>29
[6,2,2,1,1]=>23
[6,2,1,1,1,1]=>17
[6,1,1,1,1,1,1]=>11
[5,5,2]=>35
[5,5,1,1]=>25
[5,4,3]=>40
[5,4,2,1]=>31
[5,4,1,1,1]=>22
[5,3,3,1]=>26
[5,3,2,2]=>29
[5,3,2,1,1]=>22
[5,3,1,1,1,1]=>15
[5,2,2,2,1]=>19
[5,2,2,1,1,1]=>15
[5,2,1,1,1,1,1]=>11
[5,1,1,1,1,1,1,1]=>7
[4,4,4]=>30
[4,4,3,1]=>26
[4,4,2,2]=>26
[4,4,2,1,1]=>20
[4,4,1,1,1,1]=>14
[4,3,3,2]=>26
[4,3,3,1,1]=>19
[4,3,2,2,1]=>21
[4,3,2,1,1,1]=>16
[4,3,1,1,1,1,1]=>11
[4,2,2,2,2]=>17
[4,2,2,2,1,1]=>14
[4,2,2,1,1,1,1]=>11
[4,2,1,1,1,1,1,1]=>8
[4,1,1,1,1,1,1,1,1]=>5
[3,3,3,3]=>15
[3,3,3,2,1]=>14
[3,3,3,1,1,1]=>10
[3,3,2,2,2]=>15
[3,3,2,2,1,1]=>12
[3,3,2,1,1,1,1]=>9
[3,3,1,1,1,1,1,1]=>6
[3,2,2,2,2,1]=>11
[3,2,2,2,1,1,1]=>9
[3,2,2,1,1,1,1,1]=>7
[3,2,1,1,1,1,1,1,1]=>5
[3,1,1,1,1,1,1,1,1,1]=>3
[2,2,2,2,2,2]=>7
[2,2,2,2,2,1,1]=>6
[2,2,2,2,1,1,1,1]=>5
[2,2,2,1,1,1,1,1,1]=>4
[2,2,1,1,1,1,1,1,1,1]=>3
[2,1,1,1,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of refinements of a partition.
A partition $\lambda$ refines a partition $\mu$ if the parts of $\mu$ can be subdivided to obtain the parts of $\lambda$.
A partition $\lambda$ refines a partition $\mu$ if the parts of $\mu$ can be subdivided to obtain the parts of $\lambda$.
References
[1] Birkhoff, G. Lattice theory MathSciNet:0598630
[2] Ziegler, Günter M. On the poset of partitions of an integer MathSciNet:0847552
[3] Perry, J. M. Counting refinements of partitions MathOverflow:226656
[2] Ziegler, Günter M. On the poset of partitions of an integer MathSciNet:0847552
[3] Perry, J. M. Counting refinements of partitions MathOverflow:226656
Code
@cached_function def PartitionPoset(n): return posets.IntegerPartitions(n) def statistic(part): P = PartitionPoset(sum(part)) return len(P.order_filter([tuple(part)]))
Created
Dec 23, 2015 at 14:54 by Christian Stump
Updated
Oct 29, 2017 at 20:56 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!