Identifier
-
Mp00095:
Integer partitions
—to binary word⟶
Binary words
Mp00105: Binary words —complement⟶ Binary words
St000348: Binary words ⟶ ℤ
Values
[1] => 10 => 01 => 1
[2] => 100 => 011 => 3
[1,1] => 110 => 001 => 3
[3] => 1000 => 0111 => 6
[2,1] => 1010 => 0101 => 5
[1,1,1] => 1110 => 0001 => 6
[4] => 10000 => 01111 => 10
[3,1] => 10010 => 01101 => 8
[2,2] => 1100 => 0011 => 8
[2,1,1] => 10110 => 01001 => 8
[1,1,1,1] => 11110 => 00001 => 10
[5] => 100000 => 011111 => 15
[4,1] => 100010 => 011101 => 12
[3,2] => 10100 => 01011 => 11
[3,1,1] => 100110 => 011001 => 11
[2,2,1] => 11010 => 00101 => 11
[2,1,1,1] => 101110 => 010001 => 12
[1,1,1,1,1] => 111110 => 000001 => 15
[6] => 1000000 => 0111111 => 21
[5,1] => 1000010 => 0111101 => 17
[4,2] => 100100 => 011011 => 15
[4,1,1] => 1000110 => 0111001 => 15
[3,3] => 11000 => 00111 => 15
[3,2,1] => 101010 => 010101 => 14
[3,1,1,1] => 1001110 => 0110001 => 15
[2,2,2] => 11100 => 00011 => 15
[2,2,1,1] => 110110 => 001001 => 15
[2,1,1,1,1] => 1011110 => 0100001 => 17
[1,1,1,1,1,1] => 1111110 => 0000001 => 21
[7] => 10000000 => 01111111 => 28
[6,1] => 10000010 => 01111101 => 23
[5,2] => 1000100 => 0111011 => 20
[5,1,1] => 10000110 => 01111001 => 20
[4,3] => 101000 => 010111 => 19
[4,2,1] => 1001010 => 0110101 => 18
[4,1,1,1] => 10001110 => 01110001 => 19
[3,3,1] => 110010 => 001101 => 18
[3,2,2] => 101100 => 010011 => 18
[3,2,1,1] => 1010110 => 0101001 => 18
[3,1,1,1,1] => 10011110 => 01100001 => 20
[2,2,2,1] => 111010 => 000101 => 19
[2,2,1,1,1] => 1101110 => 0010001 => 20
[2,1,1,1,1,1] => 10111110 => 01000001 => 23
[1,1,1,1,1,1,1] => 11111110 => 00000001 => 28
[8] => 100000000 => 011111111 => 36
[7,1] => 100000010 => 011111101 => 30
[6,2] => 10000100 => 01111011 => 26
[6,1,1] => 100000110 => 011111001 => 26
[5,3] => 1001000 => 0110111 => 24
[5,2,1] => 10001010 => 01110101 => 23
[5,1,1,1] => 100001110 => 011110001 => 24
[4,4] => 110000 => 001111 => 24
[4,3,1] => 1010010 => 0101101 => 22
[4,2,2] => 1001100 => 0110011 => 22
[4,2,1,1] => 10010110 => 01101001 => 22
[4,1,1,1,1] => 100011110 => 011100001 => 24
[3,3,2] => 110100 => 001011 => 22
[3,3,1,1] => 1100110 => 0011001 => 22
[3,2,2,1] => 1011010 => 0100101 => 22
[3,2,1,1,1] => 10101110 => 01010001 => 23
[3,1,1,1,1,1] => 100111110 => 011000001 => 26
[2,2,2,2] => 111100 => 000011 => 24
[2,2,2,1,1] => 1110110 => 0001001 => 24
[2,2,1,1,1,1] => 11011110 => 00100001 => 26
[2,1,1,1,1,1,1] => 101111110 => 010000001 => 30
[1,1,1,1,1,1,1,1] => 111111110 => 000000001 => 36
[7,2] => 100000100 => 011111011 => 33
[6,3] => 10001000 => 01110111 => 30
[6,2,1] => 100001010 => 011110101 => 29
[5,4] => 1010000 => 0101111 => 29
[5,3,1] => 10010010 => 01101101 => 27
[5,2,2] => 10001100 => 01110011 => 27
[5,2,1,1] => 100010110 => 011101001 => 27
[4,4,1] => 1100010 => 0011101 => 27
[4,3,2] => 1010100 => 0101011 => 26
[4,3,1,1] => 10100110 => 01011001 => 26
[4,2,2,1] => 10011010 => 01100101 => 26
[4,2,1,1,1] => 100101110 => 011010001 => 27
[3,3,3] => 111000 => 000111 => 27
[3,3,2,1] => 1101010 => 0010101 => 26
[3,3,1,1,1] => 11001110 => 00110001 => 27
[3,2,2,2] => 1011100 => 0100011 => 27
[3,2,2,1,1] => 10110110 => 01001001 => 27
[3,2,1,1,1,1] => 101011110 => 010100001 => 29
[2,2,2,2,1] => 1111010 => 0000101 => 29
[2,2,2,1,1,1] => 11101110 => 00010001 => 30
[2,2,1,1,1,1,1] => 110111110 => 001000001 => 33
[1,1,1,1,1,1,1,1,1] => 1111111110 => 0000000001 => 45
[7,3] => 100001000 => 011110111 => 37
[6,4] => 10010000 => 01101111 => 35
[6,3,1] => 100010010 => 011101101 => 33
[6,2,2] => 100001100 => 011110011 => 33
[5,5] => 1100000 => 0011111 => 35
[5,4,1] => 10100010 => 01011101 => 32
[5,3,2] => 10010100 => 01101011 => 31
[5,3,1,1] => 100100110 => 011011001 => 31
[5,2,2,1] => 100011010 => 011100101 => 31
[4,4,2] => 1100100 => 0011011 => 31
[4,4,1,1] => 11000110 => 00111001 => 31
[4,3,3] => 1011000 => 0100111 => 31
[4,3,2,1] => 10101010 => 01010101 => 30
>>> Load all 300 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The non-inversion sum of a binary word.
A pair $a < b$ is an noninversion of a binary word $w = w_1 \cdots w_n$ if $w_a < w_b$. The non-inversion sum is given by $\sum(b-a)$ over all non-inversions of $w$.
A pair $a < b$ is an noninversion of a binary word $w = w_1 \cdots w_n$ if $w_a < w_b$. The non-inversion sum is given by $\sum(b-a)$ over all non-inversions of $w$.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
Map
complement
Description
Send a binary word to the word obtained by interchanging the two letters.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!