Processing math: 100%

Identifier
Values
['A',1] => ([],1) => ([],1) => ([],1) => 1
['A',2] => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => ([(0,1)],2) => 2
['B',2] => ([(0,3),(1,3),(3,2)],4) => ([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => 2
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
['A',3] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of minimal vertex covers of a graph.
A vertex cover of a graph G is a subset S of the vertices of G such that each edge of G contains at least one vertex of S. A vertex cover is minimal if it contains the least possible number of vertices.
This is also the leading coefficient of the clique polynomial of the complement of G.
This is also the number of independent sets of maximal cardinality of G.
Map
de-duplicate
Description
The de-duplicate of a graph.
Let G=(V,E) be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods {Nv|vV} of G, and has an edge (Na,Nb) between two vertices if and only if (a,b) is an edge of G. This is well-defined, because if Na=Nc and Nb=Nd, then (a,b)E if and only if (c,d)E.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where αβ if βα is a simple root.