Identifier
-
Mp00099:
Dyck paths
—bounce path⟶
Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000366: Permutations ⟶ ℤ
Values
[1,0] => [1,0] => [2,1] => [2,1] => 0
[1,0,1,0] => [1,0,1,0] => [3,1,2] => [3,2,1] => 1
[1,1,0,0] => [1,1,0,0] => [2,3,1] => [3,1,2] => 0
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [4,1,2,3] => [4,3,2,1] => 2
[1,0,1,1,0,0] => [1,0,1,1,0,0] => [3,1,4,2] => [4,2,1,3] => 1
[1,1,0,0,1,0] => [1,1,0,0,1,0] => [2,4,1,3] => [4,3,1,2] => 1
[1,1,0,1,0,0] => [1,0,1,1,0,0] => [3,1,4,2] => [4,2,1,3] => 1
[1,1,1,0,0,0] => [1,1,1,0,0,0] => [2,3,4,1] => [4,1,2,3] => 0
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [5,1,2,3,4] => [5,4,3,2,1] => 3
[1,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,0] => [4,1,2,5,3] => [5,3,2,1,4] => 2
[1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [3,1,5,2,4] => [5,4,2,1,3] => 2
[1,0,1,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => [4,1,2,5,3] => [5,3,2,1,4] => 2
[1,0,1,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => [3,1,4,5,2] => [5,2,1,3,4] => 1
[1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => [2,5,1,3,4] => [5,4,3,1,2] => 2
[1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [2,4,1,5,3] => [5,3,1,2,4] => 1
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [3,1,5,2,4] => [5,4,2,1,3] => 2
[1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [2,4,1,5,3] => [5,3,1,2,4] => 1
[1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => [3,1,4,5,2] => [5,2,1,3,4] => 1
[1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0] => [2,3,5,1,4] => [5,4,1,2,3] => 1
[1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => [2,4,1,5,3] => [5,3,1,2,4] => 1
[1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => [3,1,4,5,2] => [5,2,1,3,4] => 1
[1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [2,3,4,5,1] => [5,1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [6,1,2,3,4,5] => [6,5,4,3,2,1] => 4
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [5,1,2,3,6,4] => [6,4,3,2,1,5] => 3
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [4,1,2,6,3,5] => [6,5,3,2,1,4] => 3
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [5,1,2,3,6,4] => [6,4,3,2,1,5] => 3
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [4,1,2,5,6,3] => [6,3,2,1,4,5] => 2
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [3,1,6,2,4,5] => [6,5,4,2,1,3] => 3
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [4,1,2,6,3,5] => [6,5,3,2,1,4] => 3
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [4,1,2,5,6,3] => [6,3,2,1,4,5] => 2
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [3,1,4,6,2,5] => [6,5,2,1,3,4] => 2
[1,0,1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [4,1,2,5,6,3] => [6,3,2,1,4,5] => 2
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [3,1,4,5,6,2] => [6,2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [2,6,1,3,4,5] => [6,5,4,3,1,2] => 3
[1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [2,5,1,3,6,4] => [6,4,3,1,2,5] => 2
[1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [2,4,1,6,3,5] => [6,5,3,1,2,4] => 2
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [2,5,1,3,6,4] => [6,4,3,1,2,5] => 2
[1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [2,4,1,5,6,3] => [6,3,1,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [3,1,6,2,4,5] => [6,5,4,2,1,3] => 3
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [2,4,1,6,3,5] => [6,5,3,1,2,4] => 2
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [2,4,1,5,6,3] => [6,3,1,2,4,5] => 1
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [3,1,4,6,2,5] => [6,5,2,1,3,4] => 2
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [3,1,5,2,6,4] => [6,4,2,1,3,5] => 2
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [2,4,1,5,6,3] => [6,3,1,2,4,5] => 1
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [3,1,4,5,6,2] => [6,2,1,3,4,5] => 1
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => [2,3,6,1,4,5] => [6,5,4,1,2,3] => 2
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [2,3,5,1,6,4] => [6,4,1,2,3,5] => 1
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [2,4,1,6,3,5] => [6,5,3,1,2,4] => 2
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [2,3,5,1,6,4] => [6,4,1,2,3,5] => 1
[1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [2,4,1,5,6,3] => [6,3,1,2,4,5] => 1
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [3,1,4,6,2,5] => [6,5,2,1,3,4] => 2
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [2,3,5,1,6,4] => [6,4,1,2,3,5] => 1
[1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [2,4,1,5,6,3] => [6,3,1,2,4,5] => 1
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [3,1,4,5,6,2] => [6,2,1,3,4,5] => 1
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => [2,3,4,6,1,5] => [6,5,1,2,3,4] => 1
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [2,3,5,1,6,4] => [6,4,1,2,3,5] => 1
[1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [2,4,1,5,6,3] => [6,3,1,2,4,5] => 1
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [3,1,4,5,6,2] => [6,2,1,3,4,5] => 1
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => [6,1,2,3,4,5] => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [7,1,2,3,4,5,6] => [7,6,5,4,3,2,1] => 5
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [4,1,2,5,6,7,3] => [7,3,2,1,4,5,6] => 2
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [3,1,5,2,6,7,4] => [7,4,2,1,3,5,6] => 2
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [3,1,5,2,6,7,4] => [7,4,2,1,3,5,6] => 2
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [3,1,5,2,6,7,4] => [7,4,2,1,3,5,6] => 2
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [4,1,2,5,6,7,3] => [7,3,2,1,4,5,6] => 2
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [3,1,5,2,6,7,4] => [7,4,2,1,3,5,6] => 2
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [3,1,5,2,6,7,4] => [7,4,2,1,3,5,6] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [4,1,2,5,6,7,3] => [7,3,2,1,4,5,6] => 2
[1,0,1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [3,1,5,2,6,7,4] => [7,4,2,1,3,5,6] => 2
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [4,1,2,5,6,7,3] => [7,3,2,1,4,5,6] => 2
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [3,1,4,5,6,7,2] => [7,2,1,3,4,5,6] => 1
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [2,7,1,3,4,5,6] => [7,6,5,4,3,1,2] => 4
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [2,4,1,5,6,7,3] => [7,3,1,2,4,5,6] => 1
[1,1,0,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [3,1,5,2,6,7,4] => [7,4,2,1,3,5,6] => 2
[1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [3,1,5,2,6,7,4] => [7,4,2,1,3,5,6] => 2
[1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [3,1,5,2,6,7,4] => [7,4,2,1,3,5,6] => 2
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [2,4,1,5,6,7,3] => [7,3,1,2,4,5,6] => 1
[1,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [3,1,5,2,6,7,4] => [7,4,2,1,3,5,6] => 2
[1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [3,1,5,2,6,7,4] => [7,4,2,1,3,5,6] => 2
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [2,4,1,5,6,7,3] => [7,3,1,2,4,5,6] => 1
[1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [3,1,5,2,6,7,4] => [7,4,2,1,3,5,6] => 2
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [2,4,1,5,6,7,3] => [7,3,1,2,4,5,6] => 1
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [3,1,4,5,6,7,2] => [7,2,1,3,4,5,6] => 1
[1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [2,3,7,1,4,5,6] => [7,6,5,4,1,2,3] => 3
[1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [2,3,5,1,6,7,4] => [7,4,1,2,3,5,6] => 1
[1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [2,3,5,1,6,7,4] => [7,4,1,2,3,5,6] => 1
[1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [2,3,5,1,6,7,4] => [7,4,1,2,3,5,6] => 1
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [2,4,1,5,6,7,3] => [7,3,1,2,4,5,6] => 1
[1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [2,3,5,1,6,7,4] => [7,4,1,2,3,5,6] => 1
[1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [2,3,5,1,6,7,4] => [7,4,1,2,3,5,6] => 1
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [2,4,1,5,6,7,3] => [7,3,1,2,4,5,6] => 1
[1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [2,3,5,1,6,7,4] => [7,4,1,2,3,5,6] => 1
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [2,4,1,5,6,7,3] => [7,3,1,2,4,5,6] => 1
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [3,1,4,5,6,7,2] => [7,2,1,3,4,5,6] => 1
[1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [2,3,4,7,1,5,6] => [7,6,5,1,2,3,4] => 2
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [2,3,4,6,1,7,5] => [7,5,1,2,3,4,6] => 1
>>> Load all 266 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of double descents of a permutation.
A double descent of a permutation $\pi$ is a position $i$ such that $\pi(i) > \pi(i+1) > \pi(i+2)$.
A double descent of a permutation $\pi$ is a position $i$ such that $\pi(i) > \pi(i+1) > \pi(i+2)$.
Map
inverse first fundamental transformation
Description
Let $\sigma = (i_{11}\cdots i_{1k_1})\cdots(i_{\ell 1}\cdots i_{\ell k_\ell})$ be a permutation given by cycle notation such that every cycle starts with its maximal entry, and all cycles are ordered increasingly by these maximal entries.
Maps $\sigma$ to the permutation $[i_{11},\ldots,i_{1k_1},\ldots,i_{\ell 1},\ldots,i_{\ell k_\ell}]$ in one-line notation.
In other words, this map sends the maximal entries of the cycles to the left-to-right maxima, and the sequences between two left-to-right maxima are given by the cycles.
Maps $\sigma$ to the permutation $[i_{11},\ldots,i_{1k_1},\ldots,i_{\ell 1},\ldots,i_{\ell k_\ell}]$ in one-line notation.
In other words, this map sends the maximal entries of the cycles to the left-to-right maxima, and the sequences between two left-to-right maxima are given by the cycles.
Map
bounce path
Description
Sends a Dyck path $D$ of length $2n$ to its bounce path.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.
Map
Ringel
Description
The Ringel permutation of the LNakayama algebra corresponding to a Dyck path.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!