Identifier
-
Mp00146:
Dyck paths
—to tunnel matching⟶
Perfect matchings
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
Mp00238: Permutations —Clarke-Steingrimsson-Zeng⟶ Permutations
St000371: Permutations ⟶ ℤ
Values
[1,0] => [(1,2)] => [2,1] => [2,1] => 0
[1,0,1,0] => [(1,2),(3,4)] => [2,1,4,3] => [2,1,4,3] => 0
[1,1,0,0] => [(1,4),(2,3)] => [3,4,2,1] => [2,4,3,1] => 1
[1,0,1,0,1,0] => [(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => [2,1,4,3,6,5] => 0
[1,0,1,1,0,0] => [(1,2),(3,6),(4,5)] => [2,1,5,6,4,3] => [2,1,4,6,5,3] => 1
[1,1,0,0,1,0] => [(1,4),(2,3),(5,6)] => [3,4,2,1,6,5] => [2,4,3,1,6,5] => 1
[1,1,0,1,0,0] => [(1,6),(2,3),(4,5)] => [3,5,2,6,4,1] => [4,6,3,5,2,1] => 3
[1,1,1,0,0,0] => [(1,6),(2,5),(3,4)] => [4,5,6,3,2,1] => [2,3,6,4,5,1] => 2
[1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 0
[1,0,1,0,1,1,0,0] => [(1,2),(3,4),(5,8),(6,7)] => [2,1,4,3,7,8,6,5] => [2,1,4,3,6,8,7,5] => 1
[1,0,1,1,0,0,1,0] => [(1,2),(3,6),(4,5),(7,8)] => [2,1,5,6,4,3,8,7] => [2,1,4,6,5,3,8,7] => 1
[1,0,1,1,1,0,0,0] => [(1,2),(3,8),(4,7),(5,6)] => [2,1,6,7,8,5,4,3] => [2,1,4,5,8,6,7,3] => 2
[1,1,0,0,1,0,1,0] => [(1,4),(2,3),(5,6),(7,8)] => [3,4,2,1,6,5,8,7] => [2,4,3,1,6,5,8,7] => 1
[1,1,0,0,1,1,0,0] => [(1,4),(2,3),(5,8),(6,7)] => [3,4,2,1,7,8,6,5] => [2,4,3,1,6,8,7,5] => 2
[1,1,0,1,0,1,0,0] => [(1,8),(2,3),(4,5),(6,7)] => [3,5,2,7,4,8,6,1] => [6,8,3,5,2,7,4,1] => 5
[1,1,1,0,0,0,1,0] => [(1,6),(2,5),(3,4),(7,8)] => [4,5,6,3,2,1,8,7] => [2,3,6,4,5,1,8,7] => 2
[1,1,1,1,0,0,0,0] => [(1,8),(2,7),(3,6),(4,5)] => [5,6,7,8,4,3,2,1] => [2,3,4,8,5,6,7,1] => 3
[1,0,1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of mid points of decreasing subsequences of length 3 in a permutation.
For a permutation $\pi$ of $\{1,\ldots,n\}$, this is the number of indices $j$ such that there exist indices $i,k$ with $i < j < k$ and $\pi(i) > \pi(j) > \pi(k)$. In other words, this is the number of indices that are neither left-to-right maxima nor right-to-left minima.
This statistic can also be expressed as the number of occurrences of the mesh pattern ([3,2,1], {(0,2),(0,3),(2,0),(3,0)}): the shading fixes the first and the last element of the decreasing subsequence.
See also St000119The number of occurrences of the pattern 321 in a permutation..
For a permutation $\pi$ of $\{1,\ldots,n\}$, this is the number of indices $j$ such that there exist indices $i,k$ with $i < j < k$ and $\pi(i) > \pi(j) > \pi(k)$. In other words, this is the number of indices that are neither left-to-right maxima nor right-to-left minima.
This statistic can also be expressed as the number of occurrences of the mesh pattern ([3,2,1], {(0,2),(0,3),(2,0),(3,0)}): the shading fixes the first and the last element of the decreasing subsequence.
See also St000119The number of occurrences of the pattern 321 in a permutation..
Map
to tunnel matching
Description
Sends a Dyck path of semilength n to the noncrossing perfect matching given by matching an up-step with the corresponding down-step.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.
Map
Clarke-Steingrimsson-Zeng
Description
The Clarke-Steingrimsson-Zeng map sending descents to excedances.
This is the map $\Phi$ in [1, sec.3]. In particular, it satisfies
$$ (des, Dbot, Ddif, Res)\pi = (exc, Ebot, Edif, Ine)\Phi(\pi), $$
where
This is the map $\Phi$ in [1, sec.3]. In particular, it satisfies
$$ (des, Dbot, Ddif, Res)\pi = (exc, Ebot, Edif, Ine)\Phi(\pi), $$
where
- $des$ is the number of descents, St000021The number of descents of a permutation.,
- $exc$ is the number of (strict) excedances, St000155The number of exceedances (also excedences) of a permutation.,
- $Dbot$ is the sum of the descent bottoms, St000154The sum of the descent bottoms of a permutation.,
- $Ebot$ is the sum of the excedance bottoms,
- $Ddif$ is the sum of the descent differences, St000030The sum of the descent differences of a permutations.,
- $Edif$ is the sum of the excedance differences (or depth), St000029The depth of a permutation.,
- $Res$ is the sum of the (right) embracing numbers,
- $Ine$ is the sum of the side numbers.
Map
non-nesting-exceedence permutation
Description
The fixed-point-free permutation with deficiencies given by the perfect matching, no alignments and no inversions between exceedences.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!