Processing math: 100%

Identifier
Values
[1,0] => [1,1,0,0] => [2,1] => [2,1] => 0
[1,0,1,0] => [1,1,0,1,0,0] => [2,3,1] => [3,1,2] => 0
[1,1,0,0] => [1,1,1,0,0,0] => [3,2,1] => [3,2,1] => 1
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [2,3,4,1] => [4,1,2,3] => 0
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [2,4,3,1] => [4,2,3,1] => 2
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [3,2,4,1] => [4,2,1,3] => 1
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [3,4,2,1] => [4,3,1,2] => 1
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [4,3,2,1] => [4,3,2,1] => 1
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [2,3,4,5,1] => [5,1,2,3,4] => 0
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [2,3,5,4,1] => [5,2,3,4,1] => 3
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [2,4,3,5,1] => [5,2,3,1,4] => 2
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [2,4,5,3,1] => [5,2,4,1,3] => 2
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [2,5,4,3,1] => [5,3,4,2,1] => 2
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [3,2,4,5,1] => [5,2,1,3,4] => 1
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [3,2,5,4,1] => [5,3,2,4,1] => 2
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [3,4,2,5,1] => [5,3,1,2,4] => 1
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [3,4,5,2,1] => [5,4,1,2,3] => 1
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [3,5,4,2,1] => [5,4,2,3,1] => 1
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [4,3,2,5,1] => [5,3,2,1,4] => 1
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [4,3,5,2,1] => [5,4,2,1,3] => 1
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [4,5,3,2,1] => [5,4,3,1,2] => 2
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [5,4,3,2,1] => [5,4,3,2,1] => 2
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,1] => [6,1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [2,3,4,6,5,1] => [6,2,3,4,5,1] => 4
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [2,3,5,4,6,1] => [6,2,3,4,1,5] => 3
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [2,3,5,6,4,1] => [6,2,3,5,1,4] => 3
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [2,3,6,5,4,1] => [6,3,4,5,2,1] => 3
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [2,4,3,5,6,1] => [6,2,3,1,4,5] => 2
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [2,4,3,6,5,1] => [6,3,4,2,5,1] => 3
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [2,4,5,3,6,1] => [6,2,4,1,3,5] => 2
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [2,4,5,6,3,1] => [6,2,5,1,3,4] => 2
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [2,4,6,5,3,1] => [6,3,5,2,4,1] => 2
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [2,5,4,3,6,1] => [6,3,4,2,1,5] => 2
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [2,5,4,6,3,1] => [6,3,5,2,1,4] => 2
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [2,5,6,4,3,1] => [6,3,5,4,1,2] => 3
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,6,5,4,3,1] => [6,4,5,3,2,1] => 2
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [3,2,4,5,6,1] => [6,2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [3,2,4,6,5,1] => [6,3,2,4,5,1] => 3
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [3,2,5,4,6,1] => [6,3,2,4,1,5] => 2
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [3,2,5,6,4,1] => [6,3,2,5,1,4] => 2
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [3,2,6,5,4,1] => [6,4,3,5,2,1] => 3
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [3,4,2,5,6,1] => [6,3,1,2,4,5] => 1
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [3,4,2,6,5,1] => [6,4,2,3,5,1] => 2
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [3,4,5,2,6,1] => [6,4,1,2,3,5] => 1
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [3,4,5,6,2,1] => [6,5,1,2,3,4] => 1
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [3,4,6,5,2,1] => [6,5,2,3,4,1] => 1
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [3,5,4,2,6,1] => [6,4,2,3,1,5] => 1
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [3,5,4,6,2,1] => [6,5,2,3,1,4] => 1
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [3,5,6,4,2,1] => [6,5,2,4,1,3] => 2
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [3,6,5,4,2,1] => [6,5,3,4,2,1] => 3
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [4,3,2,5,6,1] => [6,3,2,1,4,5] => 1
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [4,3,2,6,5,1] => [6,4,3,2,5,1] => 3
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [4,3,5,2,6,1] => [6,4,2,1,3,5] => 1
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [4,3,5,6,2,1] => [6,5,2,1,3,4] => 1
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [4,3,6,5,2,1] => [6,5,3,2,4,1] => 2
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [4,5,3,2,6,1] => [6,4,3,1,2,5] => 2
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [4,5,3,6,2,1] => [6,5,3,1,2,4] => 2
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [4,5,6,3,2,1] => [6,5,4,1,2,3] => 2
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [4,6,5,3,2,1] => [6,5,4,2,3,1] => 2
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [5,4,3,2,6,1] => [6,4,3,2,1,5] => 2
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [5,4,3,6,2,1] => [6,5,3,2,1,4] => 2
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [5,4,6,3,2,1] => [6,5,4,2,1,3] => 2
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [5,6,4,3,2,1] => [6,5,4,3,1,2] => 2
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => 2
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,7,1] => [7,1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [2,3,4,6,5,7,1] => [7,2,3,4,5,1,6] => 4
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [2,3,5,4,6,7,1] => [7,2,3,4,1,5,6] => 3
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [2,4,3,5,6,7,1] => [7,2,3,1,4,5,6] => 2
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => [3,2,4,5,6,7,1] => [7,2,1,3,4,5,6] => 1
[1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,1,0,0] => [3,2,5,4,6,7,1] => [7,3,2,4,1,5,6] => 2
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,1,0,0] => [3,4,2,5,6,7,1] => [7,3,1,2,4,5,6] => 1
[1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,1,0,0] => [3,4,5,2,6,7,1] => [7,4,1,2,3,5,6] => 1
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,1,0,0] => [3,4,5,6,2,7,1] => [7,5,1,2,3,4,6] => 1
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [3,4,5,6,7,2,1] => [7,6,1,2,3,4,5] => 1
[1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0] => [4,3,2,5,6,7,1] => [7,3,2,1,4,5,6] => 1
[1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,1,0,0] => [4,3,5,2,6,7,1] => [7,4,2,1,3,5,6] => 1
[1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [4,5,6,7,3,2,1] => [7,6,5,1,2,3,4] => 2
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [5,6,7,4,3,2,1] => [7,6,5,4,1,2,3] => 3
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [6,7,5,4,3,2,1] => [7,6,5,4,3,1,2] => 3
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => 3
[1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,7,8,1] => [8,1,2,3,4,5,6,7] => 0
[1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0] => [2,3,5,4,6,7,8,1] => [8,2,3,4,1,5,6,7] => 3
[1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0] => [2,4,3,5,6,7,8,1] => [8,2,3,1,4,5,6,7] => 2
[1,0,1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,0,1,1,1,1,0,0,0,1,1,0,0,0,0] => [2,6,5,4,8,7,3,1] => [8,5,7,4,3,2,6,1] => 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0] => [3,2,4,5,6,7,8,1] => [8,2,1,3,4,5,6,7] => 1
[1,1,0,0,1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,1,1,0,1,0,0,0,1,0,0] => [3,2,6,7,5,4,8,1] => [8,4,3,6,5,1,2,7] => 4
[1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0] => [3,4,2,5,6,7,8,1] => [8,3,1,2,4,5,6,7] => 1
[1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0] => [3,4,5,2,6,7,8,1] => [8,4,1,2,3,5,6,7] => 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [3,4,5,6,7,8,2,1] => [8,7,1,2,3,4,5,6] => 1
[1,1,0,1,1,0,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,0,1,1,0,0,0,0,1,0,0] => [3,5,7,6,4,2,8,1] => [8,6,3,5,2,4,1,7] => 3
[1,1,1,0,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0] => [4,3,2,5,6,7,8,1] => [8,3,2,1,4,5,6,7] => 1
[1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0] => [4,5,6,7,8,3,2,1] => [8,7,6,1,2,3,4,5] => 2
[1,1,1,0,1,1,0,1,1,0,0,0,0,0] => [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0] => [4,6,8,7,5,3,2,1] => [8,7,6,3,5,2,4,1] => 3
[1,1,1,1,0,0,1,0,0,1,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0] => [5,4,6,3,7,2,8,1] => [8,6,4,2,1,3,5,7] => 2
[1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0] => [5,6,7,8,4,3,2,1] => [8,7,6,5,1,2,3,4] => 3
[1,1,1,1,1,0,0,0,0,1,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0] => [6,5,4,3,7,2,8,1] => [8,6,4,3,2,1,5,7] => 2
[1,1,1,1,1,0,0,1,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0] => [6,5,7,4,3,2,8,1] => [8,6,5,4,2,1,3,7] => 3
[1,1,1,1,1,0,0,1,0,0,1,0,0,0] => [1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0] => [6,5,7,4,8,3,2,1] => [8,7,6,4,2,1,3,5] => 3
[1,1,1,1,1,0,1,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0] => [6,7,5,4,3,2,8,1] => [8,6,5,4,3,1,2,7] => 3
[1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0] => [6,7,8,5,4,3,2,1] => [8,7,6,5,4,1,2,3] => 3
[1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0] => [7,6,5,4,3,2,8,1] => [8,6,5,4,3,2,1,7] => 3
>>> Load all 128 entries. <<<
[1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0] => [7,6,5,4,8,3,2,1] => [8,7,6,4,3,2,1,5] => 3
[1,1,1,1,1,1,0,0,1,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0] => [7,6,8,5,4,3,2,1] => [8,7,6,5,4,2,1,3] => 3
[1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0] => [7,8,6,5,4,3,2,1] => [8,7,6,5,4,3,1,2] => 3
[1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => 3
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,7,8,9,1] => [9,1,2,3,4,5,6,7,8] => 0
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0] => [2,4,3,5,6,7,8,9,1] => [9,2,3,1,4,5,6,7,8] => 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [3,2,4,5,6,7,8,9,1] => [9,2,1,3,4,5,6,7,8] => 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0] => [3,4,2,5,6,7,8,9,1] => [9,3,1,2,4,5,6,7,8] => 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [3,4,5,6,7,8,9,2,1] => [9,8,1,2,3,4,5,6,7] => 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0] => [4,5,6,7,8,9,3,2,1] => [9,8,7,1,2,3,4,5,6] => 2
[1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0] => [5,6,7,8,9,4,3,2,1] => [9,8,7,6,1,2,3,4,5] => 3
[1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0] => [6,7,8,9,5,4,3,2,1] => [9,8,7,6,5,1,2,3,4] => 4
[1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0] => [7,8,9,6,5,4,3,2,1] => [9,8,7,6,5,4,1,2,3] => 4
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0] => [8,9,7,6,5,4,3,2,1] => [9,8,7,6,5,4,3,1,2] => 4
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [9,8,7,6,5,4,3,2,1] => [9,8,7,6,5,4,3,2,1] => 4
[] => [1,0] => [1] => [1] => 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [3,4,5,6,7,8,9,10,2,1] => [10,9,1,2,3,4,5,6,7,8] => 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0] => [4,5,6,7,8,9,10,3,2,1] => [10,9,8,1,2,3,4,5,6,7] => 2
[1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0] => [5,6,7,8,9,10,4,3,2,1] => [10,9,8,7,1,2,3,4,5,6] => 3
[1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0] => [6,7,8,9,10,5,4,3,2,1] => [10,9,8,7,6,1,2,3,4,5] => 4
[1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0,0] => [7,8,9,10,6,5,4,3,2,1] => [10,9,8,7,6,5,1,2,3,4] => 4
[1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0] => [8,9,10,7,6,5,4,3,2,1] => [10,9,8,7,6,5,4,1,2,3] => 4
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0] => [9,10,8,7,6,5,4,3,2,1] => [10,9,8,7,6,5,4,3,1,2] => 4
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0] => [10,9,8,7,6,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 4
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,7,8,9,10,1] => [10,1,2,3,4,5,6,7,8,9] => 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,7,8,9,10,11,1] => [11,1,2,3,4,5,6,7,8,9,10] => 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [3,2,4,5,6,7,8,9,10,1] => [10,2,1,3,4,5,6,7,8,9] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length 3.
Given a permutation π=[π1,,πn], this statistic counts the number of position j such that πjj and there exist indices i,k with i<j<k and πi>πj>πk.
See also St000213The number of weak exceedances (also weak excedences) of a permutation. and St000119The number of occurrences of the pattern 321 in a permutation..
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to 312-avoiding permutation
Description
Sends a Dyck path to the 312-avoiding permutation according to Bandlow-Killpatrick.
This map is defined in [1] and sends the area (St000012The area of a Dyck path.) to the inversion number (St000018The number of inversions of a permutation.).
Map
major-index to inversion-number bijection
Description
Return the permutation whose Lehmer code equals the major code of the preimage.
This map sends the major index to the number of inversions.