Identifier
-
Mp00146:
Dyck paths
—to tunnel matching⟶
Perfect matchings
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
St000373: Permutations ⟶ ℤ
Values
[1,0] => [(1,2)] => [2,1] => [1,2] => 0
[1,0,1,0] => [(1,2),(3,4)] => [2,1,4,3] => [1,4,2,3] => 0
[1,1,0,0] => [(1,4),(2,3)] => [3,4,2,1] => [1,2,3,4] => 0
[1,0,1,0,1,0] => [(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => [1,4,2,3,6,5] => 0
[1,0,1,1,0,0] => [(1,2),(3,6),(4,5)] => [2,1,5,6,4,3] => [1,5,6,2,3,4] => 0
[1,1,0,0,1,0] => [(1,4),(2,3),(5,6)] => [3,4,2,1,6,5] => [1,6,2,3,4,5] => 0
[1,1,0,1,0,0] => [(1,6),(2,3),(4,5)] => [3,5,2,6,4,1] => [1,2,6,3,5,4] => 1
[1,1,1,0,0,0] => [(1,6),(2,5),(3,4)] => [4,5,6,3,2,1] => [1,2,3,4,5,6] => 0
[1,0,1,1,1,0,0,0] => [(1,2),(3,8),(4,7),(5,6)] => [2,1,6,7,8,5,4,3] => [1,6,7,8,2,3,4,5] => 0
[1,1,0,0,1,1,0,0] => [(1,4),(2,3),(5,8),(6,7)] => [3,4,2,1,7,8,6,5] => [1,7,8,2,3,4,5,6] => 0
[1,1,0,1,0,0,1,0] => [(1,6),(2,3),(4,5),(7,8)] => [3,5,2,6,4,1,8,7] => [1,8,2,6,3,5,4,7] => 1
[1,1,1,0,0,0,1,0] => [(1,6),(2,5),(3,4),(7,8)] => [4,5,6,3,2,1,8,7] => [1,8,2,3,4,5,6,7] => 0
[1,1,1,1,0,0,0,0] => [(1,8),(2,7),(3,6),(4,5)] => [5,6,7,8,4,3,2,1] => [1,2,3,4,5,6,7,8] => 0
[1,1,1,0,0,0,1,1,0,0] => [(1,6),(2,5),(3,4),(7,10),(8,9)] => [4,5,6,3,2,1,9,10,8,7] => [1,9,10,2,3,4,5,6,7,8] => 0
[1,1,1,1,0,0,0,0,1,0] => [(1,8),(2,7),(3,6),(4,5),(9,10)] => [5,6,7,8,4,3,2,1,10,9] => [1,10,2,3,4,5,6,7,8,9] => 0
[1,1,1,1,1,0,0,0,0,0] => [(1,10),(2,9),(3,8),(4,7),(5,6)] => [6,7,8,9,10,5,4,3,2,1] => [1,2,3,4,5,6,7,8,9,10] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length 3.
Given a permutation π=[π1,…,πn], this statistic counts the number of position j such that πj≥j and there exist indices i,k with i<j<k and πi>πj>πk.
See also St000213The number of weak exceedances (also weak excedences) of a permutation. and St000119The number of occurrences of the pattern 321 in a permutation..
Given a permutation π=[π1,…,πn], this statistic counts the number of position j such that πj≥j and there exist indices i,k with i<j<k and πi>πj>πk.
See also St000213The number of weak exceedances (also weak excedences) of a permutation. and St000119The number of occurrences of the pattern 321 in a permutation..
Map
non-nesting-exceedence permutation
Description
The fixed-point-free permutation with deficiencies given by the perfect matching, no alignments and no inversions between exceedences.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Map
to tunnel matching
Description
Sends a Dyck path of semilength n to the noncrossing perfect matching given by matching an up-step with the corresponding down-step.
This is, for a Dyck path D of semilength n, the perfect matching of {1,…,2n} with i<j being matched if Di is an up-step and Dj is the down-step connected to Di by a tunnel.
This is, for a Dyck path D of semilength n, the perfect matching of {1,…,2n} with i<j being matched if Di is an up-step and Dj is the down-step connected to Di by a tunnel.
Map
runsort
Description
The permutation obtained by sorting the increasing runs lexicographically.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!