Identifier
Values
[] => 0
[1] => 0
[2] => 0
[1,1] => 1
[3] => 1
[2,1] => 0
[1,1,1] => 2
[4] => 2
[3,1] => 0
[2,2] => 1
[2,1,1] => 2
[1,1,1,1] => 3
[5] => 3
[4,1] => 2
[3,2] => 0
[3,1,1] => 1
[2,2,1] => 2
[2,1,1,1] => 3
[1,1,1,1,1] => 4
[6] => 4
[5,1] => 3
[4,2] => 1
[4,1,1] => 2
[3,3] => 2
[3,2,1] => 0
[3,1,1,1] => 3
[2,2,2] => 3
[2,2,1,1] => 4
[2,1,1,1,1] => 4
[1,1,1,1,1,1] => 5
[7] => 5
[6,1] => 4
[5,2] => 3
[5,1,1] => 4
[4,3] => 2
[4,2,1] => 0
[4,1,1,1] => 3
[3,3,1] => 1
[3,2,2] => 2
[3,2,1,1] => 3
[3,1,1,1,1] => 4
[2,2,2,1] => 4
[2,2,1,1,1] => 5
[2,1,1,1,1,1] => 5
[1,1,1,1,1,1,1] => 6
[8] => 6
[7,1] => 5
[6,2] => 4
[6,1,1] => 5
[5,3] => 3
[5,2,1] => 3
[5,1,1,1] => 4
[4,4] => 4
[4,3,1] => 0
[4,2,2] => 1
[4,2,1,1] => 2
[4,1,1,1,1] => 5
[3,3,2] => 2
[3,3,1,1] => 3
[3,2,2,1] => 4
[3,2,1,1,1] => 4
[3,1,1,1,1,1] => 5
[2,2,2,2] => 5
[2,2,2,1,1] => 6
[2,2,1,1,1,1] => 6
[2,1,1,1,1,1,1] => 6
[1,1,1,1,1,1,1,1] => 7
[9] => 7
[8,1] => 6
[7,2] => 5
[7,1,1] => 6
[6,3] => 5
[6,2,1] => 4
[6,1,1,1] => 6
[5,4] => 4
[5,3,1] => 2
[5,2,2] => 3
[5,2,1,1] => 4
[5,1,1,1,1] => 5
[4,4,1] => 3
[4,3,2] => 0
[4,3,1,1] => 1
[4,2,2,1] => 2
[4,2,1,1,1] => 4
[4,1,1,1,1,1] => 6
[3,3,3] => 4
[3,3,2,1] => 3
[3,3,1,1,1] => 5
[3,2,2,2] => 5
[3,2,2,1,1] => 6
[3,2,1,1,1,1] => 5
[3,1,1,1,1,1,1] => 6
[2,2,2,2,1] => 6
[2,2,2,1,1,1] => 7
[2,2,1,1,1,1,1] => 7
[2,1,1,1,1,1,1,1] => 7
[1,1,1,1,1,1,1,1,1] => 8
[10] => 8
[9,1] => 7
[8,2] => 6
[8,1,1] => 7
>>> Load all 360 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The dinv defect of an integer partition.
This is the number of cells $c$ in the diagram of an integer partition $\lambda$ for which $\operatorname{arm}(c)-\operatorname{leg}(c) \not\in \{0,1\}$.
This is the number of cells $c$ in the diagram of an integer partition $\lambda$ for which $\operatorname{arm}(c)-\operatorname{leg}(c) \not\in \{0,1\}$.
References
[1] Lee, K., Li, L., Loehr, N. A. A Combinatorial Approach to the Symmetry of $q,t$-Catalan Numbers arXiv:1602.01126
Code
def statistic(P):
return sum( 1 for c in P.cells() if P.arm_length(*c)-P.leg_length(*c) not in [0,1] )
Created
Feb 06, 2016 at 17:12 by Christian Stump
Updated
Feb 25, 2021 at 20:14 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!