edit this statistic or download as text // json
Identifier
Values
[] => 0
[1] => 1
[2] => 2
[1,1] => 1
[3] => 2
[2,1] => 3
[1,1,1] => 1
[4] => 2
[3,1] => 4
[2,2] => 3
[2,1,1] => 2
[1,1,1,1] => 1
[5] => 2
[4,1] => 3
[3,2] => 5
[3,1,1] => 4
[2,2,1] => 3
[2,1,1,1] => 2
[1,1,1,1,1] => 1
[6] => 2
[5,1] => 3
[4,2] => 5
[4,1,1] => 4
[3,3] => 4
[3,2,1] => 6
[3,1,1,1] => 3
[2,2,2] => 3
[2,2,1,1] => 2
[2,1,1,1,1] => 2
[1,1,1,1,1,1] => 1
[7] => 2
[6,1] => 3
[5,2] => 4
[5,1,1] => 3
[4,3] => 5
[4,2,1] => 7
[4,1,1,1] => 4
[3,3,1] => 6
[3,2,2] => 5
[3,2,1,1] => 4
[3,1,1,1,1] => 3
[2,2,2,1] => 3
[2,2,1,1,1] => 2
[2,1,1,1,1,1] => 2
[1,1,1,1,1,1,1] => 1
[8] => 2
[7,1] => 3
[6,2] => 4
[6,1,1] => 3
[5,3] => 5
[5,2,1] => 5
[5,1,1,1] => 4
[4,4] => 4
[4,3,1] => 8
[4,2,2] => 7
[4,2,1,1] => 6
[4,1,1,1,1] => 3
[3,3,2] => 6
[3,3,1,1] => 5
[3,2,2,1] => 4
[3,2,1,1,1] => 4
[3,1,1,1,1,1] => 3
[2,2,2,2] => 3
[2,2,2,1,1] => 2
[2,2,1,1,1,1] => 2
[2,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1] => 1
[9] => 2
[8,1] => 3
[7,2] => 4
[7,1,1] => 3
[6,3] => 4
[6,2,1] => 5
[6,1,1,1] => 3
[5,4] => 5
[5,3,1] => 7
[5,2,2] => 6
[5,2,1,1] => 5
[5,1,1,1,1] => 4
[4,4,1] => 6
[4,3,2] => 9
[4,3,1,1] => 8
[4,2,2,1] => 7
[4,2,1,1,1] => 5
[4,1,1,1,1,1] => 3
[3,3,3] => 5
[3,3,2,1] => 6
[3,3,1,1,1] => 4
[3,2,2,2] => 4
[3,2,2,1,1] => 3
[3,2,1,1,1,1] => 4
[3,1,1,1,1,1,1] => 3
[2,2,2,2,1] => 3
[2,2,2,1,1,1] => 2
[2,2,1,1,1,1,1] => 2
[2,1,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1,1] => 1
[10] => 2
[9,1] => 3
[8,2] => 4
[8,1,1] => 3
>>> Load all 745 entries. <<<
[7,3] => 4
[7,2,1] => 5
[7,1,1,1] => 3
[6,4] => 5
[6,3,1] => 6
[6,2,2] => 5
[6,2,1,1] => 4
[6,1,1,1,1] => 4
[5,5] => 4
[5,4,1] => 6
[5,3,2] => 9
[5,3,1,1] => 8
[5,2,2,1] => 7
[5,2,1,1,1] => 5
[5,1,1,1,1,1] => 3
[4,4,2] => 8
[4,4,1,1] => 7
[4,3,3] => 7
[4,3,2,1] => 10
[4,3,1,1,1] => 6
[4,2,2,2] => 6
[4,2,2,1,1] => 5
[4,2,1,1,1,1] => 5
[4,1,1,1,1,1,1] => 3
[3,3,3,1] => 6
[3,3,2,2] => 5
[3,3,2,1,1] => 4
[3,3,1,1,1,1] => 4
[3,2,2,2,1] => 4
[3,2,2,1,1,1] => 3
[3,2,1,1,1,1,1] => 4
[3,1,1,1,1,1,1,1] => 3
[2,2,2,2,2] => 3
[2,2,2,2,1,1] => 2
[2,2,2,1,1,1,1] => 2
[2,2,1,1,1,1,1,1] => 2
[2,1,1,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1,1,1] => 1
[11] => 2
[10,1] => 3
[9,2] => 4
[9,1,1] => 3
[8,3] => 4
[8,2,1] => 5
[8,1,1,1] => 3
[7,4] => 4
[7,3,1] => 6
[7,2,2] => 5
[7,2,1,1] => 4
[7,1,1,1,1] => 3
[6,5] => 5
[6,4,1] => 6
[6,3,2] => 7
[6,3,1,1] => 6
[6,2,2,1] => 5
[6,2,1,1,1] => 5
[6,1,1,1,1,1] => 4
[5,5,1] => 5
[5,4,2] => 9
[5,4,1,1] => 8
[5,3,3] => 8
[5,3,2,1] => 11
[5,3,1,1,1] => 7
[5,2,2,2] => 7
[5,2,2,1,1] => 6
[5,2,1,1,1,1] => 4
[5,1,1,1,1,1,1] => 3
[4,4,3] => 7
[4,4,2,1] => 10
[4,4,1,1,1] => 6
[4,3,3,1] => 9
[4,3,2,2] => 8
[4,3,2,1,1] => 7
[4,3,1,1,1,1] => 6
[4,2,2,2,1] => 5
[4,2,2,1,1,1] => 5
[4,2,1,1,1,1,1] => 5
[4,1,1,1,1,1,1,1] => 3
[3,3,3,2] => 6
[3,3,3,1,1] => 5
[3,3,2,2,1] => 4
[3,3,2,1,1,1] => 4
[3,3,1,1,1,1,1] => 4
[3,2,2,2,2] => 4
[3,2,2,2,1,1] => 3
[3,2,2,1,1,1,1] => 3
[3,2,1,1,1,1,1,1] => 4
[3,1,1,1,1,1,1,1,1] => 3
[2,2,2,2,2,1] => 3
[2,2,2,2,1,1,1] => 2
[2,2,2,1,1,1,1,1] => 2
[2,2,1,1,1,1,1,1,1] => 2
[2,1,1,1,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1,1,1,1] => 1
[12] => 2
[11,1] => 3
[10,2] => 4
[10,1,1] => 3
[9,3] => 4
[9,2,1] => 5
[9,1,1,1] => 3
[8,4] => 4
[8,3,1] => 6
[8,2,2] => 5
[8,2,1,1] => 4
[8,1,1,1,1] => 3
[7,5] => 5
[7,4,1] => 5
[7,3,2] => 7
[7,3,1,1] => 6
[7,2,2,1] => 5
[7,2,1,1,1] => 4
[7,1,1,1,1,1] => 4
[6,6] => 4
[6,5,1] => 6
[6,4,2] => 8
[6,4,1,1] => 7
[6,3,3] => 7
[6,3,2,1] => 8
[6,3,1,1,1] => 6
[6,2,2,2] => 6
[6,2,2,1,1] => 5
[6,2,1,1,1,1] => 5
[6,1,1,1,1,1,1] => 3
[5,5,2] => 7
[5,5,1,1] => 6
[5,4,3] => 9
[5,4,2,1] => 12
[5,4,1,1,1] => 8
[5,3,3,1] => 11
[5,3,2,2] => 10
[5,3,2,1,1] => 9
[5,3,1,1,1,1] => 6
[5,2,2,2,1] => 7
[5,2,2,1,1,1] => 5
[5,2,1,1,1,1,1] => 4
[5,1,1,1,1,1,1,1] => 3
[4,4,4] => 6
[4,4,3,1] => 10
[4,4,2,2] => 9
[4,4,2,1,1] => 8
[4,4,1,1,1,1] => 5
[4,3,3,2] => 8
[4,3,3,1,1] => 7
[4,3,2,2,1] => 6
[4,3,2,1,1,1] => 7
[4,3,1,1,1,1,1] => 6
[4,2,2,2,2] => 5
[4,2,2,2,1,1] => 4
[4,2,2,1,1,1,1] => 5
[4,2,1,1,1,1,1,1] => 5
[4,1,1,1,1,1,1,1,1] => 3
[3,3,3,3] => 5
[3,3,3,2,1] => 6
[3,3,3,1,1,1] => 4
[3,3,2,2,2] => 4
[3,3,2,2,1,1] => 3
[3,3,2,1,1,1,1] => 4
[3,3,1,1,1,1,1,1] => 4
[3,2,2,2,2,1] => 4
[3,2,2,2,1,1,1] => 3
[3,2,2,1,1,1,1,1] => 3
[3,2,1,1,1,1,1,1,1] => 4
[3,1,1,1,1,1,1,1,1,1] => 3
[2,2,2,2,2,2] => 3
[2,2,2,2,2,1,1] => 2
[2,2,2,2,1,1,1,1] => 2
[2,2,2,1,1,1,1,1,1] => 2
[2,2,1,1,1,1,1,1,1,1] => 2
[2,1,1,1,1,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1,1,1,1,1] => 1
[13] => 2
[12,1] => 3
[10,3] => 4
[9,2,2] => 5
[8,5] => 4
[8,4,1] => 5
[8,3,2] => 7
[8,3,1,1] => 6
[7,6] => 5
[7,5,1] => 6
[7,4,2] => 7
[7,3,3] => 6
[6,6,1] => 5
[6,5,2] => 7
[6,5,1,1] => 6
[6,4,3] => 9
[6,4,2,1] => 10
[6,3,2,2] => 8
[6,3,1,1,1,1] => 6
[6,2,2,1,1,1] => 5
[6,1,1,1,1,1,1,1] => 3
[5,5,3] => 8
[5,4,4] => 7
[5,4,3,1] => 13
[5,4,2,2] => 12
[5,4,2,1,1] => 11
[5,4,1,1,1,1] => 6
[5,3,3,2] => 11
[5,3,3,1,1] => 10
[5,3,2,2,1] => 9
[5,3,2,1,1,1] => 8
[5,3,1,1,1,1,1] => 6
[5,2,2,2,1,1] => 5
[5,2,2,1,1,1,1] => 5
[5,2,1,1,1,1,1,1] => 4
[4,4,4,1] => 8
[4,4,3,2] => 10
[4,4,3,1,1] => 9
[4,4,2,2,1] => 8
[4,3,3,3] => 7
[4,3,3,2,1] => 7
[3,3,3,3,1] => 6
[3,3,3,2,2] => 5
[3,3,2,2,2,1] => 4
[3,3,2,1,1,1,1,1] => 4
[3,2,2,2,2,2] => 4
[3,2,2,2,2,1,1] => 3
[3,1,1,1,1,1,1,1,1,1,1] => 3
[2,2,2,2,2,2,1] => 3
[2,2,2,2,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1,1,1,1,1,1] => 1
[14] => 2
[13,1] => 3
[12,2] => 4
[12,1,1] => 3
[9,5] => 4
[8,6] => 5
[8,5,1] => 5
[8,4,2] => 7
[8,3,1,1,1] => 5
[7,7] => 4
[7,5,2] => 7
[7,4,3] => 7
[6,6,2] => 6
[6,6,1,1] => 5
[6,5,3] => 9
[6,5,1,1,1] => 8
[6,4,4] => 8
[6,4,2,2] => 11
[6,2,2,2,2] => 7
[6,1,1,1,1,1,1,1,1] => 3
[5,5,4] => 7
[5,5,1,1,1,1] => 6
[5,4,3,2] => 14
[5,4,3,1,1] => 13
[5,4,2,2,1] => 12
[5,4,2,1,1,1] => 9
[5,4,1,1,1,1,1] => 6
[5,3,3,3] => 9
[5,3,3,2,1] => 11
[5,3,2,2,2] => 8
[5,3,2,2,1,1] => 7
[5,3,2,1,1,1,1] => 8
[5,3,1,1,1,1,1,1] => 6
[5,2,2,2,2,1] => 5
[5,2,2,1,1,1,1,1] => 5
[4,4,4,2] => 9
[4,4,4,1,1] => 8
[4,4,3,3] => 8
[4,4,3,2,1] => 10
[4,3,2,2,2,1] => 6
[3,3,3,3,2] => 6
[3,3,3,3,1,1] => 5
[3,3,3,2,2,1] => 4
[3,3,2,2,2,2] => 4
[3,3,1,1,1,1,1,1,1,1] => 4
[3,2,2,2,2,1,1,1] => 3
[2,2,2,2,2,2,2] => 3
[1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 1
[15] => 2
[14,1] => 3
[12,3] => 4
[11,2,2] => 5
[9,6] => 4
[9,5,1] => 5
[8,7] => 5
[8,5,2] => 6
[7,5,3] => 8
[6,6,3] => 7
[6,5,4] => 9
[6,5,1,1,1,1] => 8
[6,4,3,1,1] => 13
[6,3,3,3] => 9
[6,3,1,1,1,1,1,1] => 5
[6,2,2,2,2,1] => 7
[5,5,5] => 6
[5,4,3,3] => 11
[5,4,3,2,1] => 15
[5,4,3,1,1,1] => 10
[5,3,2,2,2,1] => 7
[5,3,2,2,1,1,1] => 7
[5,3,1,1,1,1,1,1,1] => 6
[4,4,4,3] => 8
[4,4,4,1,1,1] => 7
[4,3,3,3,2] => 7
[3,3,3,3,3] => 5
[3,3,3,3,2,1] => 6
[3,3,3,2,2,2] => 4
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 1
[16] => 2
[15,1] => 3
[12,4] => 4
[12,1,1,1,1] => 3
[10,6] => 4
[8,8] => 4
[8,6,2] => 7
[8,5,3] => 7
[7,6,3] => 7
[7,5,3,1] => 10
[6,6,4] => 8
[6,6,2,2] => 8
[6,5,5] => 7
[6,4,3,3] => 12
[5,5,3,3] => 11
[5,5,2,2,2] => 10
[5,4,4,3] => 10
[5,4,3,2,1,1] => 11
[5,4,2,2,2,1] => 8
[4,4,4,4] => 7
[4,4,4,2,2] => 9
[4,4,3,3,2] => 8
[4,3,3,3,3] => 6
[4,3,3,3,2,1] => 7
[3,3,3,3,2,2] => 5
[3,3,3,3,1,1,1,1] => 4
[3,3,2,2,2,2,2] => 4
[2,2,2,2,2,2,2,2] => 3
[2,2,2,2,2,2,1,1,1,1] => 2
[2,2,2,2,1,1,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 1
[17] => 2
[9,8] => 5
[8,8,1] => 5
[8,6,3] => 7
[7,5,3,2] => 12
[6,5,3,3] => 13
[6,5,2,2,2] => 12
[6,4,4,3] => 12
[6,4,4,1,1,1] => 11
[6,3,3,3,2] => 11
[6,3,3,3,1,1] => 10
[5,5,4,3] => 11
[5,5,4,1,1,1] => 10
[5,5,2,2,2,1] => 9
[5,4,4,4] => 9
[5,4,3,2,2,1] => 9
[5,3,3,3,2,1] => 8
[4,4,4,3,2] => 10
[4,4,4,3,1,1] => 9
[4,4,4,2,2,1] => 8
[4,4,3,3,3] => 7
[3,3,3,3,3,2] => 6
[3,2,2,2,2,2,2,2] => 4
[3,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 3
[4,4,4,3,2,1] => 10
[5,4,3,3,2,1] => 9
[6,3,3,3,2,1] => 11
[6,5,2,2,2,1] => 12
[5,5,3,3,1,1] => 12
[6,5,4,1,1,1] => 13
[5,5,3,3,2] => 13
[5,5,4,2,2] => 14
[6,4,4,2,2] => 15
[6,5,4,3] => 14
[4,4,4,3,3] => 8
[4,4,4,4,2] => 9
[5,5,4,4] => 9
[6,4,4,4] => 10
[2,2,2,2,2,2,2,2,2] => 3
[3,3,3,3,3,3] => 5
[18] => 2
[6,2,2,2,2,2,2] => 5
[6,6,6] => 6
[4,2,2,2,2,2,2,2] => 5
[10,4,4] => 6
[9,6,3] => 6
[8,6,4] => 8
[10,8] => 5
[3,3,3,3,1,1,1,1,1,1] => 4
[9,9] => 4
[7,7,1,1,1,1] => 6
[5,4,4,3,2,1] => 11
[5,5,3,3,2,1] => 12
[5,5,4,2,2,1] => 13
[6,4,4,2,2,1] => 14
[5,5,4,3,1,1] => 14
[6,4,4,3,1,1] => 15
[6,5,3,3,1,1] => 16
[5,5,4,3,2] => 15
[6,4,4,3,2] => 16
[6,5,3,3,2] => 17
[6,5,4,2,2] => 18
[6,5,4,3,1] => 19
[6,5,4,1,1,1,1] => 10
[4,4,4,4,3] => 8
[4,3,3,3,3,3] => 6
[19] => 2
[7,2,2,2,2,2,2] => 6
[7,6,6] => 7
[5,2,2,2,2,2,2,2] => 5
[13,6] => 4
[11,4,4] => 6
[9,6,4] => 7
[8,5,4,2] => 11
[8,5,5,1] => 8
[5,5,4,3,2,1] => 15
[6,4,4,3,2,1] => 16
[6,5,3,3,2,1] => 17
[6,5,4,2,2,1] => 18
[6,5,4,3,1,1] => 19
[6,5,4,3,2] => 20
[6,5,2,2,2,2,1] => 8
[6,5,4,2,1,1,1] => 14
[6,6,2,2,2,2] => 10
[7,5,4,3,1] => 18
[2,2,2,2,2,2,2,2,2,2] => 3
[3,3,3,3,3,3,2] => 6
[4,4,3,3,3,3] => 6
[4,4,4,4,4] => 7
[5,5,5,5] => 8
[20] => 2
[10,10] => 4
[8,2,2,2,2,2,2] => 7
[8,6,4,2] => 11
[8,6,6] => 8
[10,6,4] => 7
[9,8,3] => 7
[6,6,6,2] => 9
[10,7,3] => 6
[9,7,4] => 7
[9,5,5,1] => 7
[6,5,4,3,2,1] => 21
[6,3,3,3,3,2,1] => 8
[6,5,3,2,2,2,1] => 11
[6,5,4,3,1,1,1] => 15
[7,6,2,2,2,2] => 12
[6,6,5,4] => 11
[3,3,3,3,3,3,3] => 5
[4,4,4,3,3,3] => 7
[21] => 2
[11,7,3] => 6
[5,4,2,2,2,2,2,2] => 8
[11,10] => 5
[13,4,4] => 6
[7,6,6,2] => 9
[4,4,4,4,3,2,1] => 10
[6,4,3,3,3,2,1] => 10
[6,5,4,2,2,2,1] => 12
[6,5,4,3,2,1,1] => 16
[4,4,4,4,3,3] => 8
[8,6,2,2,2,2] => 11
[22] => 2
[9,6,4,3] => 11
[8,7,7] => 7
[5,4,4,4,3,2,1] => 11
[6,5,3,3,3,2,1] => 11
[6,5,4,3,2,2,1] => 13
[15,2,2,2,2] => 5
[9,6,5,3] => 11
[8,6,5,3,1] => 15
[6,4,4,4,3,2,1] => 12
[6,5,4,3,3,2,1] => 12
[3,3,3,3,3,3,3,3] => 5
[4,4,4,4,4,4] => 7
[6,6,6,6] => 8
[24] => 2
[11,7,5,1] => 8
[9,7,5,3] => 11
[8,8,8] => 6
[17,7] => 4
[12,9,3] => 6
[5,5,5,4,3,2,1] => 15
[6,5,4,4,3,2,1] => 13
[7,6,6,6] => 9
[5,4,4,4,2,2,2,2] => 7
[13,12] => 5
[15,5,5] => 6
[9,7,5,3,1] => 13
[10,7,5,3] => 10
[3,3,3,3,3,1,1,1,1,1,1,1,1,1,1] => 4
[5,5,5,5,5] => 9
[12,10,3] => 7
[6,5,5,4,3,2,1] => 16
[6,6,4,3,3,2,2] => 13
[8,6,6,6] => 10
[9,7,5,4,1] => 13
[16,8,2] => 6
[6,6,5,4,3,2,1] => 21
[7,6,5,4,3,2] => 27
[3,3,3,3,3,3,3,3,3] => 5
[15,6,6] => 6
[7,6,5,4,3,2,1] => 28
[6,6,6,4,3,3] => 17
[4,3,3,3,3,3,3,3,3] => 6
[7,6,5,4,3,1,1,1] => 21
[10,7,6,4,1] => 12
[9,7,6,4,2] => 16
[10,8,5,4,1] => 11
[15,14] => 5
[7,6,5,4,3,2,1,1] => 22
[7,6,5,4,2,2,2,1] => 17
[10,8,6,4,1] => 12
[6,6,6,6,6] => 10
[15,15] => 4
[5,5,5,5,5,5] => 9
[6,6,6,6,3,3] => 15
[10,10,10] => 6
[9,7,5,5,3,1] => 20
[7,6,5,4,3,2,2,1] => 18
[7,6,5,3,3,3,2,1] => 15
[11,8,6,4,1] => 11
[10,8,6,4,2] => 14
[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2] => 3
[7,6,6,6,6] => 11
[7,6,5,4,3,3,2,1] => 16
[7,6,4,4,4,3,2,1] => 15
[11,8,6,5,1] => 12
[10,10,9,2] => 9
[14,9,8] => 7
[4,4,4,4,4,4,4,4] => 7
[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2] => 3
[7,6,5,4,4,3,2,1] => 16
[7,5,5,5,4,3,2,1] => 17
[16,16] => 4
[10,10,10,2] => 8
[16,8,4,2,2] => 11
[3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2] => 4
[5,4,4,4,4,4,4,4] => 8
[7,6,5,5,4,3,2,1] => 18
[6,6,6,5,4,3,2,1] => 21
[22,7,4] => 6
[12,12,4,3,2] => 13
[4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2] => 5
[7,6,6,5,4,3,2,1] => 22
[12,9,7,5,1] => 11
[7,2,2,2,2,2,2,2,2,2,2,2,2,2,2] => 5
[7,7,6,5,4,3,2,1] => 28
[13,9,7,5,1] => 11
[18,18] => 4
[24,12] => 4
[11,9,7,5,3,1] => 16
[11,8,7,5,4,1] => 17
[8,7,6,5,4,3,2,1] => 36
[8,7,7,7,7] => 11
[7,6,2,2,2,2,2,2,2,2,2,2,2,2] => 8
[7,6,6,6,6,6] => 13
[8,7,6,5,4,3,2,1,1] => 29
[8,7,6,5,4,3,2,2,1] => 24
[8,7,6,5,4,3,3,2,1] => 21
[10,10,10,10] => 8
[12,12,12,4] => 8
[8,7,6,5,4,4,3,2,1] => 20
[11,9,7,5,5,3] => 20
[4,4,4,4,4,4,4,4,4,4] => 7
[14,14,8,4] => 8
[7,6,6,6,2,2,2,2,2,2,2,2] => 12
[8,7,6,5,5,4,3,2,1] => 21
[9,9,9,9,3,3] => 13
[8,7,6,6,5,4,3,2,1] => 24
[10,10,10,5,5,2] => 14
[16,10,8,8] => 10
[26,9,7] => 7
[8,7,7,6,5,4,3,2,1] => 29
[8,8,7,6,5,4,3,2,1] => 36
[18,18,9] => 6
[9,8,7,6,5,4,3,2,1] => 45
[11,9,7,7,5,3,3] => 27
[48] => 2
[7,6,6,6,6,6,6,6] => 12
[22,9,8,5,5] => 13
[6,6,6,6,6,6,6,3,3,2] => 17
[27,14,9] => 6
[17,14,13,8] => 9
[5,5,5,5,5,5,5,5,5,5,5] => 9
[27,20,8] => 6
[26,13,7,7,2] => 10
[31,12,10,4] => 9
[6,6,6,6,6,6,6,6,6,6] => 11
[5,5,5,5,5,5,5,5,5,5,5,5] => 9
[12,12,12,12,12] => 10
[12,12,12,12,11,4] => 13
[12,12,12,12,12,4] => 12
[3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2] => 4
[11,11,11,11,11,10] => 13
[11,11,11,11,11,11] => 12
[16,14,9,9,9,9] => 14
[8,8,8,8,8,8,8,8,4,2] => 20
[24,24,24] => 6
[16,16,16,16,8,4,2] => 15
[12,12,12,12,12,12,4,4] => 17
[22,20,20,12,8] => 12
[20,20,8,4,4,4,4,4,4,4,4,4] => 13
[33,32,9,9,5] => 11
[18,18,18,18,18] => 10
[18,18,18,18,9,9] => 12
[6,6,6,6,6,6,6,6,6,6,6,6,6,6,3,3] => 15
[56,17,11,10,5] => 11
[33,26,23,12,9] => 10
[22,22,22,10,10,9,4,4] => 17
[22,22,22,10,10,10,4,4] => 16
[12,12,12,12,12,12,12,12,4,3,2] => 31
[24,24,24,24,14] => 10
[76,22,9,6] => 8
[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5] => 9
[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5] => 9
[6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6] => 11
[12,12,12,12,12,12,12,12,12,12] => 20
[24,24,24,24,24] => 10
[12,12,12,12,12,12,12,12,12,6,6,6,4,2] => 38
[54,48,18,10,8] => 11
[24,24,24,24,24,24] => 12
[37,33,20,20,13,10,10,10,7] => 22
[42,34,30,22,22,14,2] => 14
[54,52,34,18,11,7] => 13
[65,27,27,25,13,9,6,6] => 19
[18,18,18,18,18,18,18,18,18,18] => 20
[6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6] => 11
[16,16,16,16,16,16,16,8,8,8,8,8,8,8,8,4,2] => 49
[58,38,38,38,30] => 10
[12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12] => 23
[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2] => 21
[74,58,34,34,22,22,13,11,2] => 19
[61,48,48,48,45,22,12,2] => 18
[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,5,5,3,3] => 40
[98,62,36,26,14,14,14,14,14,14,12,2] => 26
[14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,13,2] => 30
[14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,2] => 29
[74,74,26,26,26,26,12,12,12,12,12,12,6,6,4,4,3,3,3,3] => 45
[6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6] => 11
[64,57,40,39,28,23,19,19,16,9,8,8,8,8,8,8,6,6] => 42
[70,70,46,28,22,22,10,9,9,9,9,8,8,8,8,8,7,7,7,3,3,3] => 38
[14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,7,7,7,7,7,2] => 41
[170,92,36,28,27,24,20,14,13,10,8,8] => 28
[12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,6,6,6,6,4,4,4,3,3] => 34
[145,83,62,44,44,42,19,16,16,10,8] => 26
[98,98,37,37,37,37,24,24,24,24,24,24,24,24,10,10,8,8] => 39
[6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6] => 11
[11,9,7,6,5,3,1] => 24
[13,11,9,7,5,3,1] => 19
[13,11,9,7,7,5,3,1] => 26
[17,13,11,9,7,5,1] => 17
[15,13,11,9,7,5,3,1] => 22
[29,23,19,17,13,11,7,1] => 17
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The diagonal inversion number of an integer partition.
The dinv of a partition is the number of cells $c$ in the diagram of an integer partition $\lambda$ for which $\operatorname{arm}(c)-\operatorname{leg}(c) \in \{0,1\}$.
See also exercise 3.19 of [2].
This statistic is equidistributed with the length of the partition, see [3].
References
[1] Lee, K., Li, L., Loehr, N. A. A Combinatorial Approach to the Symmetry of $q,t$-Catalan Numbers arXiv:1602.01126
[2] Haglund, J. The $q$,$t$-Catalan numbers and the space of diagonal harmonics MathSciNet:2371044
[3] Robin Why are the dinv-statistic and the partition length equidistributed? MathOverflow:131484
Code
def statistic(P):
    return sum(1 for c in P.cells() if P.arm_length(*c) - P.leg_length(*c) in [0,1])

Created
Feb 06, 2016 at 17:13 by Christian Stump
Updated
Jan 15, 2024 at 12:24 by Martin Rubey