Identifier
Values
[] => 0
[1] => 2
[2] => 3
[1,1] => 3
[3] => 4
[2,1] => 3
[1,1,1] => 4
[4] => 5
[3,1] => 4
[2,2] => 4
[2,1,1] => 4
[1,1,1,1] => 5
[5] => 6
[4,1] => 5
[3,2] => 4
[3,1,1] => 4
[2,2,1] => 4
[2,1,1,1] => 5
[1,1,1,1,1] => 6
[6] => 7
[5,1] => 6
[4,2] => 5
[4,1,1] => 5
[3,3] => 5
[3,2,1] => 4
[3,1,1,1] => 5
[2,2,2] => 5
[2,2,1,1] => 5
[2,1,1,1,1] => 6
[1,1,1,1,1,1] => 7
[7] => 8
[6,1] => 7
[5,2] => 6
[5,1,1] => 6
[4,3] => 5
[4,2,1] => 5
[4,1,1,1] => 5
[3,3,1] => 5
[3,2,2] => 5
[3,2,1,1] => 5
[3,1,1,1,1] => 6
[2,2,2,1] => 5
[2,2,1,1,1] => 6
[2,1,1,1,1,1] => 7
[1,1,1,1,1,1,1] => 8
[8] => 9
[7,1] => 8
[6,2] => 7
[6,1,1] => 7
[5,3] => 6
[5,2,1] => 6
[5,1,1,1] => 6
[4,4] => 6
[4,3,1] => 5
[4,2,2] => 5
[4,2,1,1] => 5
[4,1,1,1,1] => 6
[3,3,2] => 5
[3,3,1,1] => 5
[3,2,2,1] => 5
[3,2,1,1,1] => 6
[3,1,1,1,1,1] => 7
[2,2,2,2] => 6
[2,2,2,1,1] => 6
[2,2,1,1,1,1] => 7
[2,1,1,1,1,1,1] => 8
[1,1,1,1,1,1,1,1] => 9
[9] => 10
[8,1] => 9
[7,2] => 8
[7,1,1] => 8
[6,3] => 7
[6,2,1] => 7
[6,1,1,1] => 7
[5,4] => 6
[5,3,1] => 6
[5,2,2] => 6
[5,2,1,1] => 6
[5,1,1,1,1] => 6
[4,4,1] => 6
[4,3,2] => 5
[4,3,1,1] => 5
[4,2,2,1] => 5
[4,2,1,1,1] => 6
[4,1,1,1,1,1] => 7
[3,3,3] => 6
[3,3,2,1] => 5
[3,3,1,1,1] => 6
[3,2,2,2] => 6
[3,2,2,1,1] => 6
[3,2,1,1,1,1] => 7
[3,1,1,1,1,1,1] => 8
[2,2,2,2,1] => 6
[2,2,2,1,1,1] => 7
[2,2,1,1,1,1,1] => 8
[2,1,1,1,1,1,1,1] => 9
[1,1,1,1,1,1,1,1,1] => 10
[10] => 11
[9,1] => 10
[8,2] => 9
[8,1,1] => 9
>>> Load all 360 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition.
Put differently, this is the smallest number $n$ such that the partition fits into the triangular partition $(n-1,n-2,\dots,1)$.
Put differently, this is the smallest number $n$ such that the partition fits into the triangular partition $(n-1,n-2,\dots,1)$.
Code
def statistic(p):
if p:
return max( p[i]+i+1 for i in range(len(p)) )
return 0
Created
Feb 09, 2016 at 12:26 by Christian Stump
Updated
Feb 25, 2021 at 20:07 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!