Identifier
-
Mp00095:
Integer partitions
—to binary word⟶
Binary words
Mp00105: Binary words —complement⟶ Binary words
Mp00135: Binary words —rotate front-to-back⟶ Binary words
St000391: Binary words ⟶ ℤ
Values
[1] => 10 => 01 => 10 => 1
[2] => 100 => 011 => 110 => 3
[1,1] => 110 => 001 => 010 => 2
[3] => 1000 => 0111 => 1110 => 6
[2,1] => 1010 => 0101 => 1010 => 4
[1,1,1] => 1110 => 0001 => 0010 => 3
[4] => 10000 => 01111 => 11110 => 10
[3,1] => 10010 => 01101 => 11010 => 7
[2,2] => 1100 => 0011 => 0110 => 5
[2,1,1] => 10110 => 01001 => 10010 => 5
[1,1,1,1] => 11110 => 00001 => 00010 => 4
[5] => 100000 => 011111 => 111110 => 15
[4,1] => 100010 => 011101 => 111010 => 11
[3,2] => 10100 => 01011 => 10110 => 8
[3,1,1] => 100110 => 011001 => 110010 => 8
[2,2,1] => 11010 => 00101 => 01010 => 6
[2,1,1,1] => 101110 => 010001 => 100010 => 6
[1,1,1,1,1] => 111110 => 000001 => 000010 => 5
[6] => 1000000 => 0111111 => 1111110 => 21
[5,1] => 1000010 => 0111101 => 1111010 => 16
[4,2] => 100100 => 011011 => 110110 => 12
[4,1,1] => 1000110 => 0111001 => 1110010 => 12
[3,3] => 11000 => 00111 => 01110 => 9
[3,2,1] => 101010 => 010101 => 101010 => 9
[3,1,1,1] => 1001110 => 0110001 => 1100010 => 9
[2,2,2] => 11100 => 00011 => 00110 => 7
[2,2,1,1] => 110110 => 001001 => 010010 => 7
[2,1,1,1,1] => 1011110 => 0100001 => 1000010 => 7
[1,1,1,1,1,1] => 1111110 => 0000001 => 0000010 => 6
[7] => 10000000 => 01111111 => 11111110 => 28
[6,1] => 10000010 => 01111101 => 11111010 => 22
[5,2] => 1000100 => 0111011 => 1110110 => 17
[5,1,1] => 10000110 => 01111001 => 11110010 => 17
[4,3] => 101000 => 010111 => 101110 => 13
[4,2,1] => 1001010 => 0110101 => 1101010 => 13
[4,1,1,1] => 10001110 => 01110001 => 11100010 => 13
[3,3,1] => 110010 => 001101 => 011010 => 10
[3,2,2] => 101100 => 010011 => 100110 => 10
[3,2,1,1] => 1010110 => 0101001 => 1010010 => 10
[3,1,1,1,1] => 10011110 => 01100001 => 11000010 => 10
[2,2,2,1] => 111010 => 000101 => 001010 => 8
[2,2,1,1,1] => 1101110 => 0010001 => 0100010 => 8
[2,1,1,1,1,1] => 10111110 => 01000001 => 10000010 => 8
[1,1,1,1,1,1,1] => 11111110 => 00000001 => 00000010 => 7
[8] => 100000000 => 011111111 => 111111110 => 36
[7,1] => 100000010 => 011111101 => 111111010 => 29
[6,2] => 10000100 => 01111011 => 11110110 => 23
[6,1,1] => 100000110 => 011111001 => 111110010 => 23
[5,3] => 1001000 => 0110111 => 1101110 => 18
[5,2,1] => 10001010 => 01110101 => 11101010 => 18
[5,1,1,1] => 100001110 => 011110001 => 111100010 => 18
[4,4] => 110000 => 001111 => 011110 => 14
[4,3,1] => 1010010 => 0101101 => 1011010 => 14
[4,2,2] => 1001100 => 0110011 => 1100110 => 14
[4,2,1,1] => 10010110 => 01101001 => 11010010 => 14
[4,1,1,1,1] => 100011110 => 011100001 => 111000010 => 14
[3,3,2] => 110100 => 001011 => 010110 => 11
[3,3,1,1] => 1100110 => 0011001 => 0110010 => 11
[3,2,2,1] => 1011010 => 0100101 => 1001010 => 11
[3,2,1,1,1] => 10101110 => 01010001 => 10100010 => 11
[3,1,1,1,1,1] => 100111110 => 011000001 => 110000010 => 11
[2,2,2,2] => 111100 => 000011 => 000110 => 9
[2,2,2,1,1] => 1110110 => 0001001 => 0010010 => 9
[2,2,1,1,1,1] => 11011110 => 00100001 => 01000010 => 9
[2,1,1,1,1,1,1] => 101111110 => 010000001 => 100000010 => 9
[1,1,1,1,1,1,1,1] => 111111110 => 000000001 => 000000010 => 8
[7,2] => 100000100 => 011111011 => 111110110 => 30
[6,3] => 10001000 => 01110111 => 11101110 => 24
[6,2,1] => 100001010 => 011110101 => 111101010 => 24
[5,4] => 1010000 => 0101111 => 1011110 => 19
[5,3,1] => 10010010 => 01101101 => 11011010 => 19
[5,2,2] => 10001100 => 01110011 => 11100110 => 19
[5,2,1,1] => 100010110 => 011101001 => 111010010 => 19
[4,4,1] => 1100010 => 0011101 => 0111010 => 15
[4,3,2] => 1010100 => 0101011 => 1010110 => 15
[4,3,1,1] => 10100110 => 01011001 => 10110010 => 15
[4,2,2,1] => 10011010 => 01100101 => 11001010 => 15
[4,2,1,1,1] => 100101110 => 011010001 => 110100010 => 15
[3,3,3] => 111000 => 000111 => 001110 => 12
[3,3,2,1] => 1101010 => 0010101 => 0101010 => 12
[3,3,1,1,1] => 11001110 => 00110001 => 01100010 => 12
[3,2,2,2] => 1011100 => 0100011 => 1000110 => 12
[3,2,2,1,1] => 10110110 => 01001001 => 10010010 => 12
[3,2,1,1,1,1] => 101011110 => 010100001 => 101000010 => 12
[2,2,2,2,1] => 1111010 => 0000101 => 0001010 => 10
[2,2,2,1,1,1] => 11101110 => 00010001 => 00100010 => 10
[2,2,1,1,1,1,1] => 110111110 => 001000001 => 010000010 => 10
[1,1,1,1,1,1,1,1,1] => 1111111110 => 0000000001 => 0000000010 => 9
[7,3] => 100001000 => 011110111 => 111101110 => 31
[6,4] => 10010000 => 01101111 => 11011110 => 25
[6,3,1] => 100010010 => 011101101 => 111011010 => 25
[6,2,2] => 100001100 => 011110011 => 111100110 => 25
[5,5] => 1100000 => 0011111 => 0111110 => 20
[5,4,1] => 10100010 => 01011101 => 10111010 => 20
[5,3,2] => 10010100 => 01101011 => 11010110 => 20
[5,3,1,1] => 100100110 => 011011001 => 110110010 => 20
[5,2,2,1] => 100011010 => 011100101 => 111001010 => 20
[4,4,2] => 1100100 => 0011011 => 0110110 => 16
[4,4,1,1] => 11000110 => 00111001 => 01110010 => 16
[4,3,3] => 1011000 => 0100111 => 1001110 => 16
[4,3,2,1] => 10101010 => 01010101 => 10101010 => 16
>>> Load all 271 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The sum of the positions of the ones in a binary word.
Map
rotate front-to-back
Description
The rotation of a binary word, first letter last.
This is the word obtained by moving the first letter to the end.
This is the word obtained by moving the first letter to the end.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
Map
complement
Description
Send a binary word to the word obtained by interchanging the two letters.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!