Identifier
-
Mp00050:
Ordered trees
—to binary tree: right brother = right child⟶
Binary trees
Mp00008: Binary trees —to complete tree⟶ Ordered trees
St000397: Ordered trees ⟶ ℤ
Values
[[]] => [.,.] => [[],[]] => 2
[[],[]] => [.,[.,.]] => [[],[[],[]]] => 2
[[[]]] => [[.,.],.] => [[[],[]],[]] => 2
[[],[],[]] => [.,[.,[.,.]]] => [[],[[],[[],[]]]] => 2
[[],[[]]] => [.,[[.,.],.]] => [[],[[[],[]],[]]] => 2
[[[]],[]] => [[.,.],[.,.]] => [[[],[]],[[],[]]] => 3
[[[],[]]] => [[.,[.,.]],.] => [[[],[[],[]]],[]] => 2
[[[[]]]] => [[[.,.],.],.] => [[[[],[]],[]],[]] => 2
[[],[],[],[]] => [.,[.,[.,[.,.]]]] => [[],[[],[[],[[],[]]]]] => 2
[[],[],[[]]] => [.,[.,[[.,.],.]]] => [[],[[],[[[],[]],[]]]] => 2
[[],[[]],[]] => [.,[[.,.],[.,.]]] => [[],[[[],[]],[[],[]]]] => 3
[[],[[],[]]] => [.,[[.,[.,.]],.]] => [[],[[[],[[],[]]],[]]] => 2
[[],[[[]]]] => [.,[[[.,.],.],.]] => [[],[[[[],[]],[]],[]]] => 2
[[[]],[],[]] => [[.,.],[.,[.,.]]] => [[[],[]],[[],[[],[]]]] => 3
[[[]],[[]]] => [[.,.],[[.,.],.]] => [[[],[]],[[[],[]],[]]] => 3
[[[],[]],[]] => [[.,[.,.]],[.,.]] => [[[],[[],[]]],[[],[]]] => 3
[[[[]]],[]] => [[[.,.],.],[.,.]] => [[[[],[]],[]],[[],[]]] => 3
[[[],[],[]]] => [[.,[.,[.,.]]],.] => [[[],[[],[[],[]]]],[]] => 2
[[[],[[]]]] => [[.,[[.,.],.]],.] => [[[],[[[],[]],[]]],[]] => 2
[[[[]],[]]] => [[[.,.],[.,.]],.] => [[[[],[]],[[],[]]],[]] => 3
[[[[],[]]]] => [[[.,[.,.]],.],.] => [[[[],[[],[]]],[]],[]] => 2
[[[[[]]]]] => [[[[.,.],.],.],.] => [[[[[],[]],[]],[]],[]] => 2
[[],[],[],[],[]] => [.,[.,[.,[.,[.,.]]]]] => [[],[[],[[],[[],[[],[]]]]]] => 2
[[],[],[],[[]]] => [.,[.,[.,[[.,.],.]]]] => [[],[[],[[],[[[],[]],[]]]]] => 2
[[],[],[[]],[]] => [.,[.,[[.,.],[.,.]]]] => [[],[[],[[[],[]],[[],[]]]]] => 3
[[],[],[[],[]]] => [.,[.,[[.,[.,.]],.]]] => [[],[[],[[[],[[],[]]],[]]]] => 2
[[],[],[[[]]]] => [.,[.,[[[.,.],.],.]]] => [[],[[],[[[[],[]],[]],[]]]] => 2
[[],[[]],[],[]] => [.,[[.,.],[.,[.,.]]]] => [[],[[[],[]],[[],[[],[]]]]] => 3
[[],[[]],[[]]] => [.,[[.,.],[[.,.],.]]] => [[],[[[],[]],[[[],[]],[]]]] => 3
[[],[[],[]],[]] => [.,[[.,[.,.]],[.,.]]] => [[],[[[],[[],[]]],[[],[]]]] => 3
[[],[[[]]],[]] => [.,[[[.,.],.],[.,.]]] => [[],[[[[],[]],[]],[[],[]]]] => 3
[[],[[],[],[]]] => [.,[[.,[.,[.,.]]],.]] => [[],[[[],[[],[[],[]]]],[]]] => 2
[[],[[],[[]]]] => [.,[[.,[[.,.],.]],.]] => [[],[[[],[[[],[]],[]]],[]]] => 2
[[],[[[]],[]]] => [.,[[[.,.],[.,.]],.]] => [[],[[[[],[]],[[],[]]],[]]] => 3
[[],[[[],[]]]] => [.,[[[.,[.,.]],.],.]] => [[],[[[[],[[],[]]],[]],[]]] => 2
[[],[[[[]]]]] => [.,[[[[.,.],.],.],.]] => [[],[[[[[],[]],[]],[]],[]]] => 2
[[[]],[],[],[]] => [[.,.],[.,[.,[.,.]]]] => [[[],[]],[[],[[],[[],[]]]]] => 3
[[[]],[],[[]]] => [[.,.],[.,[[.,.],.]]] => [[[],[]],[[],[[[],[]],[]]]] => 3
[[[]],[[]],[]] => [[.,.],[[.,.],[.,.]]] => [[[],[]],[[[],[]],[[],[]]]] => 3
[[[]],[[],[]]] => [[.,.],[[.,[.,.]],.]] => [[[],[]],[[[],[[],[]]],[]]] => 3
[[[]],[[[]]]] => [[.,.],[[[.,.],.],.]] => [[[],[]],[[[[],[]],[]],[]]] => 3
[[[],[]],[],[]] => [[.,[.,.]],[.,[.,.]]] => [[[],[[],[]]],[[],[[],[]]]] => 3
[[[[]]],[],[]] => [[[.,.],.],[.,[.,.]]] => [[[[],[]],[]],[[],[[],[]]]] => 3
[[[],[]],[[]]] => [[.,[.,.]],[[.,.],.]] => [[[],[[],[]]],[[[],[]],[]]] => 3
[[[[]]],[[]]] => [[[.,.],.],[[.,.],.]] => [[[[],[]],[]],[[[],[]],[]]] => 3
[[[],[],[]],[]] => [[.,[.,[.,.]]],[.,.]] => [[[],[[],[[],[]]]],[[],[]]] => 3
[[[],[[]]],[]] => [[.,[[.,.],.]],[.,.]] => [[[],[[[],[]],[]]],[[],[]]] => 3
[[[[]],[]],[]] => [[[.,.],[.,.]],[.,.]] => [[[[],[]],[[],[]]],[[],[]]] => 3
[[[[],[]]],[]] => [[[.,[.,.]],.],[.,.]] => [[[[],[[],[]]],[]],[[],[]]] => 3
[[[[[]]]],[]] => [[[[.,.],.],.],[.,.]] => [[[[[],[]],[]],[]],[[],[]]] => 3
[[[],[],[],[]]] => [[.,[.,[.,[.,.]]]],.] => [[[],[[],[[],[[],[]]]]],[]] => 2
[[[],[],[[]]]] => [[.,[.,[[.,.],.]]],.] => [[[],[[],[[[],[]],[]]]],[]] => 2
[[[],[[]],[]]] => [[.,[[.,.],[.,.]]],.] => [[[],[[[],[]],[[],[]]]],[]] => 3
[[[],[[],[]]]] => [[.,[[.,[.,.]],.]],.] => [[[],[[[],[[],[]]],[]]],[]] => 2
[[[],[[[]]]]] => [[.,[[[.,.],.],.]],.] => [[[],[[[[],[]],[]],[]]],[]] => 2
[[[[]],[],[]]] => [[[.,.],[.,[.,.]]],.] => [[[[],[]],[[],[[],[]]]],[]] => 3
[[[[]],[[]]]] => [[[.,.],[[.,.],.]],.] => [[[[],[]],[[[],[]],[]]],[]] => 3
[[[[],[]],[]]] => [[[.,[.,.]],[.,.]],.] => [[[[],[[],[]]],[[],[]]],[]] => 3
[[[[[]]],[]]] => [[[[.,.],.],[.,.]],.] => [[[[[],[]],[]],[[],[]]],[]] => 3
[[[[],[],[]]]] => [[[.,[.,[.,.]]],.],.] => [[[[],[[],[[],[]]]],[]],[]] => 2
[[[[],[[]]]]] => [[[.,[[.,.],.]],.],.] => [[[[],[[[],[]],[]]],[]],[]] => 2
[[[[[]],[]]]] => [[[[.,.],[.,.]],.],.] => [[[[[],[]],[[],[]]],[]],[]] => 3
[[[[[],[]]]]] => [[[[.,[.,.]],.],.],.] => [[[[[],[[],[]]],[]],[]],[]] => 2
[[[[[[]]]]]] => [[[[[.,.],.],.],.],.] => [[[[[[],[]],[]],[]],[]],[]] => 2
[[],[],[],[],[],[]] => [.,[.,[.,[.,[.,[.,.]]]]]] => [[],[[],[[],[[],[[],[[],[]]]]]]] => 2
[[],[],[],[],[[]]] => [.,[.,[.,[.,[[.,.],.]]]]] => [[],[[],[[],[[],[[[],[]],[]]]]]] => 2
[[],[],[],[[]],[]] => [.,[.,[.,[[.,.],[.,.]]]]] => [[],[[],[[],[[[],[]],[[],[]]]]]] => 3
[[],[],[],[[],[]]] => [.,[.,[.,[[.,[.,.]],.]]]] => [[],[[],[[],[[[],[[],[]]],[]]]]] => 2
[[],[],[],[[[]]]] => [.,[.,[.,[[[.,.],.],.]]]] => [[],[[],[[],[[[[],[]],[]],[]]]]] => 2
[[],[],[[]],[],[]] => [.,[.,[[.,.],[.,[.,.]]]]] => [[],[[],[[[],[]],[[],[[],[]]]]]] => 3
[[],[],[[]],[[]]] => [.,[.,[[.,.],[[.,.],.]]]] => [[],[[],[[[],[]],[[[],[]],[]]]]] => 3
[[],[],[[],[]],[]] => [.,[.,[[.,[.,.]],[.,.]]]] => [[],[[],[[[],[[],[]]],[[],[]]]]] => 3
[[],[],[[[]]],[]] => [.,[.,[[[.,.],.],[.,.]]]] => [[],[[],[[[[],[]],[]],[[],[]]]]] => 3
[[],[],[[],[],[]]] => [.,[.,[[.,[.,[.,.]]],.]]] => [[],[[],[[[],[[],[[],[]]]],[]]]] => 2
[[],[],[[],[[]]]] => [.,[.,[[.,[[.,.],.]],.]]] => [[],[[],[[[],[[[],[]],[]]],[]]]] => 2
[[],[],[[[]],[]]] => [.,[.,[[[.,.],[.,.]],.]]] => [[],[[],[[[[],[]],[[],[]]],[]]]] => 3
[[],[],[[[],[]]]] => [.,[.,[[[.,[.,.]],.],.]]] => [[],[[],[[[[],[[],[]]],[]],[]]]] => 2
[[],[],[[[[]]]]] => [.,[.,[[[[.,.],.],.],.]]] => [[],[[],[[[[[],[]],[]],[]],[]]]] => 2
[[],[[]],[],[],[]] => [.,[[.,.],[.,[.,[.,.]]]]] => [[],[[[],[]],[[],[[],[[],[]]]]]] => 3
[[],[[]],[],[[]]] => [.,[[.,.],[.,[[.,.],.]]]] => [[],[[[],[]],[[],[[[],[]],[]]]]] => 3
[[],[[]],[[]],[]] => [.,[[.,.],[[.,.],[.,.]]]] => [[],[[[],[]],[[[],[]],[[],[]]]]] => 3
[[],[[]],[[],[]]] => [.,[[.,.],[[.,[.,.]],.]]] => [[],[[[],[]],[[[],[[],[]]],[]]]] => 3
[[],[[]],[[[]]]] => [.,[[.,.],[[[.,.],.],.]]] => [[],[[[],[]],[[[[],[]],[]],[]]]] => 3
[[],[[],[]],[],[]] => [.,[[.,[.,.]],[.,[.,.]]]] => [[],[[[],[[],[]]],[[],[[],[]]]]] => 3
[[],[[[]]],[],[]] => [.,[[[.,.],.],[.,[.,.]]]] => [[],[[[[],[]],[]],[[],[[],[]]]]] => 3
[[],[[],[]],[[]]] => [.,[[.,[.,.]],[[.,.],.]]] => [[],[[[],[[],[]]],[[[],[]],[]]]] => 3
[[],[[[]]],[[]]] => [.,[[[.,.],.],[[.,.],.]]] => [[],[[[[],[]],[]],[[[],[]],[]]]] => 3
[[],[[],[],[]],[]] => [.,[[.,[.,[.,.]]],[.,.]]] => [[],[[[],[[],[[],[]]]],[[],[]]]] => 3
[[],[[],[[]]],[]] => [.,[[.,[[.,.],.]],[.,.]]] => [[],[[[],[[[],[]],[]]],[[],[]]]] => 3
[[],[[[]],[]],[]] => [.,[[[.,.],[.,.]],[.,.]]] => [[],[[[[],[]],[[],[]]],[[],[]]]] => 3
[[],[[[],[]]],[]] => [.,[[[.,[.,.]],.],[.,.]]] => [[],[[[[],[[],[]]],[]],[[],[]]]] => 3
[[],[[[[]]]],[]] => [.,[[[[.,.],.],.],[.,.]]] => [[],[[[[[],[]],[]],[]],[[],[]]]] => 3
[[],[[],[],[],[]]] => [.,[[.,[.,[.,[.,.]]]],.]] => [[],[[[],[[],[[],[[],[]]]]],[]]] => 2
[[],[[],[],[[]]]] => [.,[[.,[.,[[.,.],.]]],.]] => [[],[[[],[[],[[[],[]],[]]]],[]]] => 2
[[],[[],[[]],[]]] => [.,[[.,[[.,.],[.,.]]],.]] => [[],[[[],[[[],[]],[[],[]]]],[]]] => 3
[[],[[],[[],[]]]] => [.,[[.,[[.,[.,.]],.]],.]] => [[],[[[],[[[],[[],[]]],[]]],[]]] => 2
[[],[[],[[[]]]]] => [.,[[.,[[[.,.],.],.]],.]] => [[],[[[],[[[[],[]],[]],[]]],[]]] => 2
[[],[[[]],[],[]]] => [.,[[[.,.],[.,[.,.]]],.]] => [[],[[[[],[]],[[],[[],[]]]],[]]] => 3
[[],[[[]],[[]]]] => [.,[[[.,.],[[.,.],.]],.]] => [[],[[[[],[]],[[[],[]],[]]],[]]] => 3
[[],[[[],[]],[]]] => [.,[[[.,[.,.]],[.,.]],.]] => [[],[[[[],[[],[]]],[[],[]]],[]]] => 3
[[],[[[[]]],[]]] => [.,[[[[.,.],.],[.,.]],.]] => [[],[[[[[],[]],[]],[[],[]]],[]]] => 3
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The Strahler number of a rooted tree.
Map
to binary tree: right brother = right child
Description
Return a binary tree of size $n-1$ (where $n$ is the size of an ordered tree $t$) obtained from $t$ by the following recursive rule:
- if $x$ is the right brother of $y$ in $t$, then $x$ becomes the right child of $y$;
- if $x$ is the first child of $y$ in $t$, then $x$ becomes the left child of $y$,
and removing the root of $t$.
- if $x$ is the right brother of $y$ in $t$, then $x$ becomes the right child of $y$;
- if $x$ is the first child of $y$ in $t$, then $x$ becomes the left child of $y$,
and removing the root of $t$.
Map
to complete tree
Description
Return the same tree seen as an ordered tree. By default, leaves are transformed into actual nodes.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!