Identifier
Values
[1] => [1,0] => [1,0] => [[]] => 1
[2] => [1,0,1,0] => [1,1,0,0] => [[[]]] => 3
[1,1] => [1,1,0,0] => [1,0,1,0] => [[],[]] => 2
[3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => [[[[]]]] => 6
[2,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => [[[]],[]] => 4
[1,1,1] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => [[],[],[]] => 3
[4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [[[[[]]]]] => 10
[3,1] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => [[[[]]],[]] => 7
[2,2] => [1,1,1,0,0,0] => [1,1,0,1,0,0] => [[[],[]]] => 5
[2,1,1] => [1,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,0] => [[[]],[],[]] => 5
[1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [[],[],[],[]] => 4
[5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [[[[[[]]]]]] => 15
[4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [[[[[]]]],[]] => 11
[3,2] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => [[[[]],[]]] => 8
[3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => [[[[]]],[],[]] => 8
[2,2,1] => [1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [[[],[]],[]] => 6
[2,1,1,1] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0] => [[[]],[],[],[]] => 6
[1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[]] => 5
[6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [[[[[[[]]]]]]] => 21
[5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [[[[[[]]]]],[]] => 16
[4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => [[[[[]]],[]]] => 12
[4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [[[[[]]]],[],[]] => 12
[3,3] => [1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0] => [[[[],[]]]] => 9
[3,2,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [[[[]],[]],[]] => 9
[3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [[[[]]],[],[],[]] => 9
[2,2,2] => [1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0] => [[[],[],[]]] => 7
[2,2,1,1] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [[[],[]],[],[]] => 7
[2,1,1,1,1] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [[[]],[],[],[],[]] => 7
[1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[],[]] => 6
[7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [[[[[[[[]]]]]]]] => 28
[6,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [[[[[[[]]]]]],[]] => 22
[5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [[[[[[]]]],[]]] => 17
[5,1,1] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0] => [[[[[[]]]]],[],[]] => 17
[4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [[[[[]],[]]]] => 13
[4,2,1] => [1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [[[[[]]],[]],[]] => 13
[4,1,1,1] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0] => [[[[[]]]],[],[],[]] => 13
[3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [[[[],[]]],[]] => 10
[3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => [[[[]],[],[]]] => 10
[3,2,1,1] => [1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => [[[[]],[]],[],[]] => 10
[3,1,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0] => [[[[]]],[],[],[],[]] => 10
[2,2,2,1] => [1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [[[],[],[]],[]] => 8
[2,2,1,1,1] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [[[],[]],[],[],[]] => 8
[2,1,1,1,1,1] => [1,0,1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [[[]],[],[],[],[],[]] => 8
[1,1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[],[],[]] => 7
[6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [[[[[[[]]]]],[]]] => 23
[5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [[[[[[]]],[]]]] => 18
[5,2,1] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0,1,0] => [[[[[[]]]],[]],[]] => 18
[4,4] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [[[[[],[]]]]] => 14
[4,3,1] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => [[[[[]],[]]],[]] => 14
[4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [[[[[]]],[],[]]] => 14
[4,2,1,1] => [1,0,1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0,1,0] => [[[[[]]],[]],[],[]] => 14
[3,3,2] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => 11
[3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [[[[],[]]],[],[]] => 11
[3,2,2,1] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => [[[[]],[],[]],[]] => 11
[3,2,1,1,1] => [1,0,1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0,1,0] => [[[[]],[]],[],[],[]] => 11
[3,1,1,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0] => [[[[]]],[],[],[],[],[]] => 11
[2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [[[],[],[],[]]] => 9
[2,2,2,1,1] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [[[],[],[]],[],[]] => 9
[2,2,1,1,1,1] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [[[],[]],[],[],[],[]] => 9
[2,1,1,1,1,1,1] => [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0] => [[[]],[],[],[],[],[],[]] => 9
[1,1,1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [[],[],[],[],[],[],[],[]] => 8
[6,3] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [[[[[[[]]]],[]]]] => 24
[5,4] => [1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [[[[[[]],[]]]]] => 19
[5,3,1] => [1,0,1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0,1,0] => [[[[[[]]],[]]],[]] => 19
[5,2,2] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0] => [[[[[[]]]],[],[]]] => 19
[4,4,1] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => [[[[[],[]]]],[]] => 15
[4,3,2] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [[[[[]],[]],[]]] => 15
[4,3,1,1] => [1,0,1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0,1,0] => [[[[[]],[]]],[],[]] => 15
[4,2,2,1] => [1,0,1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,1,0,0,1,0] => [[[[[]]],[],[]],[]] => 15
[3,3,3] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [[[[],[],[]]]] => 12
[3,3,2,1] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => [[[[],[]],[]],[]] => 12
[3,3,1,1,1] => [1,1,1,0,1,0,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0,1,0] => [[[[],[]]],[],[],[]] => 12
[3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [[[[]],[],[],[]]] => 12
[3,2,2,1,1] => [1,0,1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0,1,0] => [[[[]],[],[]],[],[]] => 12
[2,2,2,2,1] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [[[],[],[],[]],[]] => 10
[2,2,2,1,1,1] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [[[],[],[]],[],[],[]] => 10
[2,2,1,1,1,1,1] => [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0] => [[[],[]],[],[],[],[],[]] => 10
[6,4] => [1,0,1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [[[[[[[]]],[]]]]] => 25
[5,5] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [[[[[[],[]]]]]] => 20
[5,4,1] => [1,0,1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0,1,0] => [[[[[[]],[]]]],[]] => 20
[5,3,2] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,1,0,0] => [[[[[[]]],[]],[]]] => 20
[4,4,2] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [[[[[],[]]],[]]] => 16
[4,4,1,1] => [1,1,1,0,1,0,1,0,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0,1,0] => [[[[[],[]]]],[],[]] => 16
[4,3,3] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [[[[[]],[],[]]]] => 16
[4,3,2,1] => [1,0,1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,1,0,0,1,0] => [[[[[]],[]],[]],[]] => 16
[4,2,2,2] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0] => [[[[[]]],[],[],[]]] => 16
[3,3,3,1] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [[[[],[],[]]],[]] => 13
[3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [[[[],[]],[],[]]] => 13
[3,3,2,1,1] => [1,1,1,0,1,1,0,0,0,1,0,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0,1,0] => [[[[],[]],[]],[],[]] => 13
[3,2,2,2,1] => [1,0,1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,0,0,1,0,1,0,1,0,0,1,0] => [[[[]],[],[],[]],[]] => 13
[2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [[[],[],[],[],[]]] => 11
[2,2,2,2,1,1] => [1,1,1,1,0,1,0,0,0,1,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0,1,0] => [[[],[],[],[]],[],[]] => 11
[6,5] => [1,0,1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0] => [[[[[[[]],[]]]]]] => 26
[5,5,1] => [1,1,1,0,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => [[[[[[],[]]]]],[]] => 21
[5,4,2] => [1,0,1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,1,0,0] => [[[[[[]],[]]],[]]] => 21
[5,3,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,1,0,0,0] => [[[[[[]]],[],[]]]] => 21
[4,4,3] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [[[[[],[]],[]]]] => 17
[4,4,2,1] => [1,1,1,0,1,0,1,1,0,0,0,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0,1,0] => [[[[[],[]]],[]],[]] => 17
[4,3,3,1] => [1,0,1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0,1,0] => [[[[[]],[],[]]],[]] => 17
[4,3,2,2] => [1,0,1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,1,0,1,0,0] => [[[[[]],[]],[],[]]] => 17
[3,3,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [[[[],[],[]],[]]] => 14
>>> Load all 131 entries. <<<
[3,3,3,1,1] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0,1,0] => [[[[],[],[]]],[],[]] => 14
[3,3,2,2,1] => [1,1,1,0,1,1,0,1,0,0,0,1,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0,1,0] => [[[[],[]],[],[]],[]] => 14
[3,2,2,2,2] => [1,0,1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => [[[[]],[],[],[],[]]] => 14
[2,2,2,2,2,1] => [1,1,1,1,0,1,0,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0,1,0] => [[[],[],[],[],[]],[]] => 12
[6,6] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [[[[[[[],[]]]]]]] => 27
[5,5,2] => [1,1,1,0,1,0,1,0,1,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,1,0,0] => [[[[[[],[]]]],[]]] => 22
[5,4,3] => [1,0,1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,1,0,0,1,0,0,0] => [[[[[[]],[]],[]]]] => 22
[4,4,4] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [[[[[],[],[]]]]] => 18
[4,4,3,1] => [1,1,1,0,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0,1,0] => [[[[[],[]],[]]],[]] => 18
[4,4,2,2] => [1,1,1,0,1,0,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,1,0,1,0,0] => [[[[[],[]]],[],[]]] => 18
[4,3,3,2] => [1,0,1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,1,0,0,1,0,1,0,0,1,0,0] => [[[[[]],[],[]],[]]] => 18
[3,3,3,3] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [[[[],[],[],[]]]] => 15
[3,3,3,2,1] => [1,1,1,1,1,0,0,1,0,0,0,1,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0,1,0] => [[[[],[],[]],[]],[]] => 15
[3,3,2,2,2] => [1,1,1,0,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,1,0,0,1,0,1,0,1,0,0] => [[[[],[]],[],[],[]]] => 15
[2,2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [[[],[],[],[],[],[]]] => 13
[5,5,3] => [1,1,1,0,1,0,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,1,0,0,0] => [[[[[[],[]]],[]]]] => 23
[5,4,4] => [1,0,1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,1,1,1,0,0,1,0,1,0,0,0,0] => [[[[[[]],[],[]]]]] => 23
[4,4,4,1] => [1,1,1,1,1,0,1,0,0,0,0,1,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0,1,0] => [[[[[],[],[]]]],[]] => 19
[4,4,3,2] => [1,1,1,0,1,1,1,0,0,1,0,0,0,0] => [1,1,1,1,0,1,0,0,1,0,0,1,0,0] => [[[[[],[]],[]],[]]] => 19
[4,3,3,3] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,0,1,0,1,0,1,0,0,0] => [[[[[]],[],[],[]]]] => 19
[3,3,3,3,1] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0,1,0] => [[[[],[],[],[]]],[]] => 16
[3,3,3,2,2] => [1,1,1,1,1,0,0,1,0,1,0,0,0,0] => [1,1,1,0,1,0,1,0,0,1,0,1,0,0] => [[[[],[],[]],[],[]]] => 16
[5,5,4] => [1,1,1,0,1,1,1,0,1,0,0,0,0,0] => [1,1,1,1,1,0,1,0,0,1,0,0,0,0] => [[[[[[],[]],[]]]]] => 24
[4,4,4,2] => [1,1,1,1,1,0,1,0,0,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,1,0,0] => [[[[[],[],[]]],[]]] => 20
[4,4,3,3] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,0,0,1,0,1,0,0,0] => [[[[[],[]],[],[]]]] => 20
[3,3,3,3,2] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,1,0,0] => [[[[],[],[],[]],[]]] => 17
[5,5,5] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [[[[[[],[],[]]]]]] => 25
[4,4,4,3] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,1,0,0,0] => [[[[[],[],[]],[]]]] => 21
[3,3,3,3,3] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [[[[],[],[],[],[]]]] => 18
[4,4,4,4] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [[[[[],[],[],[]]]]] => 22
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The path length of an ordered tree.
This is the sum of the lengths of all paths from the root to a node, see Section 2.3.4.5 of [1].
Map
Delest-Viennot-inverse
Description
Return the Dyck path obtained by applying the inverse of Delest-Viennot's bijection to the corresponding parallelogram polyomino.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
The Delest-Viennot bijection $\beta$ returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path $(\beta^{(-1)}\circ\gamma)(D)$.
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
Map
to ordered tree
Description
Sends a Dyck path to the ordered tree encoding the heights of the path.
This map is recursively defined as follows: A Dyck path $D$ of semilength $n$ may be decomposed, according to its returns (St000011The number of touch points (or returns) of a Dyck path.), into smaller paths $D_1,\dots,D_k$ of respective semilengths $n_1,\dots,n_k$ (so one has $n = n_1 + \dots n_k$) each of which has no returns.
Denote by $\tilde D_i$ the path of semilength $n_i-1$ obtained from $D_i$ by removing the initial up- and the final down-step.
This map then sends $D$ to the tree $T$ having a root note with ordered children $T_1,\dots,T_k$ which are again ordered trees computed from $D_1,\dots,D_k$ respectively.
The unique path of semilength $1$ is sent to the tree consisting of a single node.