Identifier
-
Mp00199:
Dyck paths
—prime Dyck path⟶
Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St000420: Dyck paths ⟶ ℤ (values match St000419The number of Dyck paths that are weakly above the Dyck path, except for the path itself.)
Values
[1,0] => [1,1,0,0] => [1,1,1,0,0,0] => [1,1,0,0,1,0] => 3
[1,0,1,0] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0] => 6
[1,1,0,0] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0] => 4
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 10
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,0,1,1,0,0] => 16
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => 14
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,0,0] => 10
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => 5
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 15
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 34
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => 46
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => 30
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => 35
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 40
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => 34
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => 30
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 20
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,1,0,1,0,0,0,1,1,0,0] => 25
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => 18
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 20
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 15
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 6
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => 21
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,0,1,1,1,0,0,0,0] => 52
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,0,1,1,0,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,1,0,0,0] => 89
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => 55
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,0,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0] => 105
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,1,0,0,0] => [1,1,0,1,0,0,1,1,1,0,0,1,0,0] => 110
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,1,0,1,0,0] => 142
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,1,0,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,1,1,0,1,0,0,0] => 80
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,1,0,0,0,0] => [1,1,0,1,0,0,1,1,1,1,0,0,0,0] => 50
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,1,0,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,0,1,1,1,0,0,0] => 95
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,0,1,1,1,0,0,0,1,0,0,0] => [1,1,0,1,1,0,0,0,1,0,1,1,0,0] => 123
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,1,1,0,1,1,1,0,0,1,0,0,0,0] => [1,1,0,1,1,0,0,0,1,1,0,1,0,0] => 110
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,1,0,1,1,1,0,1,0,0,0,0,0] => [1,1,0,1,1,0,0,0,1,1,1,0,0,0] => 75
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0,1,1,0,0] => 66
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => 95
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,1,1,0,0,1,0,1,1,0,0,0,0] => [1,1,1,0,0,1,0,0,1,1,0,0,1,0] => 127
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,1,0,0,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0,1,0] => 123
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,1,1,0,0,1,1,0,1,0,0,0,0] => [1,1,1,0,1,0,0,0,1,1,0,0,1,0] => 105
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0,1,0] => 67
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,1,0,0] => 75
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,1,0,1,0,0,1,1,0,0,0,0] => [1,1,1,0,0,1,0,0,1,1,0,1,0,0] => 96
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,1,0,0,0] => 55
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 35
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,1,0,0,0,0,0] => [1,1,1,0,0,1,0,0,1,1,1,0,0,0] => 65
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,1,0,1,1,0,0,0,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,1,0,0] => 89
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,1,1,0,1,1,0,0,1,0,0,0,0] => [1,1,1,0,1,0,0,0,1,1,0,1,0,0] => 80
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,1,0,1,0,0,0,0,0] => [1,1,1,0,1,0,0,0,1,1,1,0,0,0] => 55
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,1,0,0] => 51
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,1,0,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0,1,0] => 50
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,1,1,0,0,0,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0,1,0] => 43
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,1,1,0,0,1,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0] => 75
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 65
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,1,1,1,0,0,1,1,0,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0,1,0] => 47
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,1,1,0,1,0,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => 55
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,1,1,0,1,0,0,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,1,0,0] => 50
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => 35
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,1,0,0] => 36
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0,1,0] => 22
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0,1,0] => 25
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0] => 27
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 21
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 7
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0] => 28
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,0,1,1,1,0,0,0,0,0] => 74
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,0,1,0,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,0,1,1,1,0,1,0,0,0,0] => 132
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,1,1,1,1,0,0,0,0,0] => 80
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,0,0,1,1,1,0,0,0,0] => 155
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,1,1,0,1,0,1,1,0,0,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,1,0,0,0] => 193
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,1,1,0,1,0,0,0] => 317
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,1,1,0,1,0,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,0] => 138
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0] => 83
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,0,1,1,0,1,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0] => 200
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,0,1,0,1,1,1,0,0,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0] => 343
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,1,0,0,1,0,0,0] => [1,1,1,0,1,0,1,1,1,0,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,1,0,1,0,0,0] => 290
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,1,0,0,0,0] => [1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0] => 185
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0] => 281
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,1,0,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,1,1,0,0,1,0,0] => 386
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,1,1,0,1,0,0,0] => 283
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0] => [1,1,0,1,0,0,1,0,1,1,1,1,0,0,0,0] => 180
[] => [1,0] => [1,1,0,0] => [1,0,1,0] => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of Dyck paths that are weakly above a Dyck path.
Map
Knuth-Krattenthaler
Description
The map that sends the Dyck path to a 321-avoiding permutation, then applies the Robinson-Schensted correspondence and finally interprets the first row of the insertion tableau and the second row of the recording tableau as up steps.
Interpreting a pair of two-row standard tableaux of the same shape as a Dyck path is explained by Knuth in [1, pp. 60].
Krattenthaler's bijection between Dyck paths and $321$-avoiding permutations used is Mp00119to 321-avoiding permutation (Krattenthaler), see [2].
This is the inverse of the map Mp00127left-to-right-maxima to Dyck path that interprets the left-to-right maxima of the permutation obtained from Mp00024to 321-avoiding permutation as a Dyck path.
Interpreting a pair of two-row standard tableaux of the same shape as a Dyck path is explained by Knuth in [1, pp. 60].
Krattenthaler's bijection between Dyck paths and $321$-avoiding permutations used is Mp00119to 321-avoiding permutation (Krattenthaler), see [2].
This is the inverse of the map Mp00127left-to-right-maxima to Dyck path that interprets the left-to-right maxima of the permutation obtained from Mp00024to 321-avoiding permutation as a Dyck path.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!